Engineering Laboratory for Functionalized Carbon Materials, Shenzhen Key Laboratory for Graphene-based Materials, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China.
School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
Small. 2021 Jan;17(3):e2005564. doi: 10.1002/smll.202005564. Epub 2020 Dec 22.
The precise control of the ice crystal growth during a freezing process is of essential importance for achieving porous cryogels with desired architectures. The present work reports a systematic study on the achievement of multi-structural cryogels from a binary dispersion containing 50 wt% 2,2,6,6-tetramethylpiperidin-1-oxyl, radical-mediated oxidized cellulose nanofibers (TOCNs), and 50 wt% graphene oxide (GO) via the unidirectional freeze-drying (UDF) approach. It is found that the increase in the sol's pH imparts better dispersion of the two components through increased electrostatic repulsion, while also causing progressively weaker gel networks leading to micro-lamella cryogels from the UDF process. At the pH of 5.2, an optimum between TOCN and GO self-aggregation and dispersion is achieved, leading to the strongest TOCN-GO interactions and their templating into the regular micro-honeycomb structures. A two-faceted mechanism for explaining the cryogel formation is proposed and it is shown that the interplay of the maximized TOCN-GO interactions and the high affinity of the dispersoid complexes for the ice crystals are necessary for obtaining a micro-honeycomb morphology along the freezing direction. Further, by linking the microstructure and rheology of the corresponding precursor sols, a diagram for predicting the microstructure of TOCN-GO cryogels obtained through the UDF process is proposed.
在冷冻过程中精确控制冰晶生长对于获得具有所需结构的多孔冷冻凝胶至关重要。本工作报道了通过单向冷冻干燥(UDF)方法,从包含 50wt%2,2,6,6-四甲基哌啶-1-氧自由基介导氧化纤维素纳米纤维(TOCN)和 50wt%氧化石墨烯(GO)的二元分散体中实现多结构冷冻凝胶的系统研究。结果发现,增加溶胶的 pH 值通过增加静电排斥作用赋予两种组分更好的分散性,同时也导致凝胶网络逐渐减弱,从而导致微层状冷冻凝胶从 UDF 过程中形成。在 pH 值为 5.2 时,实现了 TOCN 和 GO 自组装和分散之间的最佳平衡,导致 TOCN-GO 相互作用最强,并将其模板化为规则的微蜂窝结构。提出了一种解释冷冻凝胶形成的两面机制,并表明最大化 TOCN-GO 相互作用和分散体复合物对冰晶的高亲和力对于在冷冻方向上获得微蜂窝形态是必要的。此外,通过将相应前体溶胶的微观结构和流变学联系起来,提出了一个通过 UDF 过程获得 TOCN-GO 冷冻凝胶微观结构的预测图。