IEEE Trans Pattern Anal Mach Intell. 2022 Jun;44(6):2923-2937. doi: 10.1109/TPAMI.2020.3046439. Epub 2022 May 5.
This paper aims to build a supervised classifier for dealing with imbalanced datasets, uncertain class proportions, dependencies between features, the presence of both numeric and categorical features, and arbitrary loss functions. The Bayes classifier suffers when prior probability shifts occur between the training and testing sets. A solution is to look for an equalizer decision rule whose class-conditional risks are equal. Such a classifier corresponds to a minimax classifier when it maximizes the Bayes risk. We develop a novel box-constrained minimax classifier which takes into account some constraints on the priors to control the risk maximization. We analyze the empirical Bayes risk with respect to the box-constrained priors for discrete inputs. We show that this risk is a concave non-differentiable multivariate piecewise affine function. A projected subgradient algorithm is derived to maximize this empirical Bayes risk over the box-constrained simplex. Its convergence is established and its speed is bounded. The optimization algorithm is scalable when the number of classes is large. The robustness of our classifier is studied on diverse databases. Our classifier, jointly applied with a clustering algorithm to process mixed attributes, tends to equalize the class-conditional risks while being not too pessimistic.
本文旨在构建一个有监督的分类器,用于处理不平衡数据集、不确定的类比例、特征之间的依赖关系、同时存在数值和分类特征以及任意损失函数。贝叶斯分类器在训练集和测试集之间出现先验概率转移时会受到影响。一种解决方案是寻找一个均衡决策规则,其条件风险相等。当它最大化贝叶斯风险时,这种分类器对应于最小最大分类器。我们开发了一种新颖的框约束最小最大分类器,该分类器考虑了一些先验约束来控制风险最大化。我们分析了离散输入情况下框约束先验的经验贝叶斯风险。我们表明,该风险是一个凹非可微的多元分段仿射函数。推导了一个投影次梯度算法,用于在框约束单形上最大化该经验贝叶斯风险。证明了其收敛性和速度有界。当类的数量很大时,优化算法是可扩展的。我们的分类器在各种数据库上的稳健性进行了研究。我们的分类器与聚类算法联合应用于处理混合属性,倾向于均衡条件风险,同时又不过于悲观。