Suppr超能文献

全自动样本处理和低投入蛋白质组分析工作流程。

Fully Automated Sample Processing and Analysis Workflow for Low-Input Proteome Profiling.

机构信息

Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States.

Department of Biology, Brigham Young University, Provo, Utah 84602, United States.

出版信息

Anal Chem. 2021 Jan 26;93(3):1658-1666. doi: 10.1021/acs.analchem.0c04240. Epub 2020 Dec 22.

Abstract

Recent advances in sample preparation and analysis have enabled direct profiling of protein expression in single mammalian cells and other trace samples. Several techniques to prepare and analyze low-input samples employ custom fluidics for nanoliter sample processing and manual sample injection onto a specialized separation column. While being effective, these highly specialized systems require significant expertise to fabricate and operate, which has greatly limited implementation in most proteomic laboratories. Here, we report a fully automated platform termed autoPOTS (automated preparation in one pot for trace samples) that uses only commercially available instrumentation for sample processing and analysis. An unmodified, low-cost commercial robotic pipetting platform was utilized for one-pot sample preparation. We used low-volume 384-well plates and periodically added water or buffer to the microwells to compensate for limited evaporation during sample incubation. Prepared samples were analyzed directly from the well plate with a commercial autosampler that was modified with a 10-port valve for compatibility with 30 μm i.d. nanoLC columns. We used autoPOTS to analyze 1-500 HeLa cells and observed only a moderate reduction in peptide coverage for 150 cells and a 24% reduction in coverage for single cells compared to our previously developed nanoPOTS platform. To evaluate clinical feasibility, we identified an average of 1095 protein groups from ∼130 sorted B or T lymphocytes. We anticipate that the straightforward implementation of autoPOTS will make it an attractive option for low-input and single-cell proteomics in many laboratories.

摘要

最近在样品制备和分析方面的进展使得能够直接分析单个哺乳动物细胞和其他痕量样品中的蛋白质表达。有几种用于制备和分析低输入样品的技术采用定制的纳升级样品处理流体和手动将样品注入专用分离柱。虽然这些高度专业化的系统非常有效,但它们需要大量的专业知识来制造和操作,这极大地限制了大多数蛋白质组学实验室的实施。在这里,我们报告了一种称为 autoPOTS(微量样品的一次性制备自动化)的全自动平台,该平台仅使用商业上可用的仪器进行样品处理和分析。我们使用未修改的低成本商业机器人移液平台进行一锅式样品制备。我们使用小体积 384 孔板,并定期向微孔中添加水或缓冲液,以补偿样品孵育过程中有限的蒸发。用商业自动进样器直接从微孔板上分析制备的样品,该自动进样器用 10 通阀进行了修改,以与 30 μm id 的 nanoLC 柱兼容。我们使用 autoPOTS 分析了 1-500 个 HeLa 细胞,与我们之前开发的 nanoPOTS 平台相比,仅观察到 150 个细胞的肽覆盖率适度降低了 10%,单个细胞的覆盖率降低了 24%。为了评估临床可行性,我们从大约 130 个分选的 B 或 T 淋巴细胞中鉴定出平均 1095 个蛋白质组。我们预计,autoPOTS 的简单实施将使其成为许多实验室低输入和单细胞蛋白质组学的有吸引力的选择。

相似文献

1
Fully Automated Sample Processing and Analysis Workflow for Low-Input Proteome Profiling.
Anal Chem. 2021 Jan 26;93(3):1658-1666. doi: 10.1021/acs.analchem.0c04240. Epub 2020 Dec 22.
2
Easy and Accessible Workflow for Label-Free Single-Cell Proteomics.
J Am Soc Mass Spectrom. 2023 Oct 4;34(10):2374-2380. doi: 10.1021/jasms.3c00240. Epub 2023 Aug 18.
3
[Recent progress in capillary electrophoresis-based high-sensitivity proteomics].
Se Pu. 2020 Oct 8;38(10):1125-1132. doi: 10.3724/SP.J.1123.2020.03003.
4
Automated Coupling of Nanodroplet Sample Preparation with Liquid Chromatography-Mass Spectrometry for High-Throughput Single-Cell Proteomics.
Anal Chem. 2020 Aug 4;92(15):10588-10596. doi: 10.1021/acs.analchem.0c01551. Epub 2020 Jul 22.
5
Benchtop-compatible sample processing workflow for proteome profiling of < 100 mammalian cells.
Anal Bioanal Chem. 2019 Jul;411(19):4587-4596. doi: 10.1007/s00216-018-1493-9. Epub 2018 Nov 20.
6
In-Depth Mass Spectrometry-Based Proteomics of Formalin-Fixed, Paraffin-Embedded Tissues with a Spatial Resolution of 50-200 μm.
J Proteome Res. 2022 Sep 2;21(9):2237-2245. doi: 10.1021/acs.jproteome.2c00409. Epub 2022 Aug 2.
8
Fully Integrated Online Strategy for Highly Sensitive Proteome Profiling.
Methods Mol Biol. 2024;2817:57-65. doi: 10.1007/978-1-0716-3934-4_6.
9
Improved Single-Cell Proteome Coverage Using Narrow-Bore Packed NanoLC Columns and Ultrasensitive Mass Spectrometry.
Anal Chem. 2020 Feb 4;92(3):2665-2671. doi: 10.1021/acs.analchem.9b04631. Epub 2020 Jan 21.

引用本文的文献

2
Enhancing Tandem MS Sensitivity and Peptide Identification via Ion Preaccumulation in an Orbitrap Mass Spectrometer.
J Proteome Res. 2025 Aug 1;24(8):4292-4299. doi: 10.1021/acs.jproteome.5c00186. Epub 2025 Jun 30.
3
Trends in Mass Spectrometry-Based Single-Cell Proteomics.
Anal Chem. 2025 Mar 25;97(11):5893-5907. doi: 10.1021/acs.analchem.5c00661. Epub 2025 Mar 16.
4
MS-based Solutions for Single Cell Proteomics.
Genomics Proteomics Bioinformatics. 2025 Feb 22. doi: 10.1093/gpbjnl/qzaf012.
7
Spatial Proteomics towards cellular Resolution.
Expert Rev Proteomics. 2024 Dec 25:1-10. doi: 10.1080/14789450.2024.2445809.
8
10
Parallel sample processing for mass spectrometry-based single cell proteomics.
Anal Chim Acta. 2024 Nov 15;1329:343241. doi: 10.1016/j.aca.2024.343241. Epub 2024 Sep 12.

本文引用的文献

2
Single-cell proteomic and transcriptomic analysis of macrophage heterogeneity using SCoPE2.
Genome Biol. 2021 Jan 27;22(1):50. doi: 10.1186/s13059-021-02267-5.
4
Single-cell Proteomics: Progress and Prospects.
Mol Cell Proteomics. 2020 Nov;19(11):1739-1748. doi: 10.1074/mcp.R120.002234. Epub 2020 Aug 26.
5
Automated Coupling of Nanodroplet Sample Preparation with Liquid Chromatography-Mass Spectrometry for High-Throughput Single-Cell Proteomics.
Anal Chem. 2020 Aug 4;92(15):10588-10596. doi: 10.1021/acs.analchem.0c01551. Epub 2020 Jul 22.
6
Fast Quantitative Analysis of timsTOF PASEF Data with MSFragger and IonQuant.
Mol Cell Proteomics. 2020 Sep;19(9):1575-1585. doi: 10.1074/mcp.TIR120.002048. Epub 2020 Jul 2.
7
The regulation and function of CD20: an "enigma" of B-cell biology and targeted therapy.
Haematologica. 2020 Jun;105(6):1494-1506. doi: 10.3324/haematol.2019.243543.
8
An Improved Boosting to Amplify Signal with Isobaric Labeling (iBASIL) Strategy for Precise Quantitative Single-cell Proteomics.
Mol Cell Proteomics. 2020 May;19(5):828-838. doi: 10.1074/mcp.RA119.001857. Epub 2020 Mar 3.
9
Improved Single-Cell Proteome Coverage Using Narrow-Bore Packed NanoLC Columns and Ultrasensitive Mass Spectrometry.
Anal Chem. 2020 Feb 4;92(3):2665-2671. doi: 10.1021/acs.analchem.9b04631. Epub 2020 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验