Research Center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou 510060, China.
Research Center, Guangzhou Municipal Engineering Design & Research Institute, Guangzhou 510060, China.
Sci Total Environ. 2021 Mar 20;761:144134. doi: 10.1016/j.scitotenv.2020.144134. Epub 2020 Dec 14.
Biofouling by the invasive golden mussel Limnoperna fortunei deleteriously affects artificial water systems, but few effective, environmentally friendly antifouling strategies exist. We propose ultrasound for control of this invasive mussel and report minimum exposure times to kill juveniles and adults at ultrasonic powers ranging 300-600 W from a fixed distance of 8.5 cm. Analysis using a PMA + RT-qPCR assay revealed the formation of tissue lesions in response to ultrasound, with gill tissue more prone to injury than adductor muscle tissue. Shell microstructure determined using scanning electron microscopy (SEM) + energy dispersive X-ray spectroscopy (EDS) is plywood-like, with a thicker shell and increased numbers of prism and nacre layers in adult mussels that provide greater resistance to ultrasound, reducing mortality and tissue lesions. Our results suggest L. fortunei biomass could be effectively reduced by ultrasound, especially for early life-history stages without, or with only immature shells.
入侵性贻贝滤食生物福氏亮蜾蠃对人工水系统造成有害影响,但目前几乎没有有效的、环保的防污策略。我们提出了利用超声波来控制这种入侵性贻贝的方法,并报告了在 300-600 W 的超声功率下,从固定距离 8.5 cm 处杀死幼体和成体所需的最短暴露时间。使用 PMA + RT-qPCR 分析检测到贻贝组织对超声波的反应形成了组织损伤,其中贻贝的鳃组织比闭壳肌组织更容易受伤。使用扫描电子显微镜 (SEM) + 能谱仪 (EDS) 确定的贝壳微观结构呈胶合板状,成年贻贝的贝壳更厚,棱柱层和珍珠层的数量也更多,这为它们提供了更大的抗超声波能力,从而降低了死亡率和组织损伤。我们的研究结果表明,超声波可以有效地减少福氏亮蜾蠃的生物量,特别是对于早期的生命史阶段,此时贻贝的贝壳尚未成熟或只有不成熟的贝壳。