Suppr超能文献

PredictMed:一种用于识别神经肌肉性髋关节发育不良风险因素的机器学习模型:一项多中心描述性研究。

PredictMed: A Machine Learning Model for Identifying Risk Factors of Neuromuscular Hip Dysplasia: A Multicenter Descriptive Study.

作者信息

Bertoncelli Carlo M, Altamura Paola, Bertoncelli Domenico, Rampal Virginie, Vieira Edgar Ramos, Solla Federico

机构信息

Department of Physical Therapy, Nicole Wertheim College of Nursing & Health Sciences, Florida International University, Miami, Florida, United States.

E.E.A.P. H. Germain, Children Hospital, PredictMed Lab, Nice, France.

出版信息

Neuropediatrics. 2021 Oct;52(5):343-350. doi: 10.1055/s-0040-1721703. Epub 2020 Dec 22.

Abstract

Neuromuscular hip dysplasia (NHD) is a common and severe problem in patients with cerebral palsy (CP). Previous studies have so far identified only spasticity (SP) and high levels of Gross Motor Function Classification System as factors associated with NHD. The aim of this study is to develop a machine learning model to identify additional risk factors of NHD. This was a cross-sectional multicenter descriptive study of 102 teenagers with CP (60 males, 42 females; 60 inpatients, 42 outpatients; mean age 16.5 ± 1.2 years, range 12-18 years). Data on etiology, diagnosis, SP, epilepsy (E), clinical history, and functional assessments were collected between 2007 and 2017. Hip dysplasia was defined as femoral head lateral migration percentage > 33% on pelvic radiogram. A logistic regression-prediction model named PredictMed was developed to identify risk factors of NHD. Twenty-eight (27%) teenagers with CP had NHD, of which 18 (67%) had dislocated hips. Logistic regression model identified poor walking abilities ( < 0.001; odds ratio [OR] infinity; 95% confidence interval [CI] infinity), scoliosis ( = 0.01; OR 3.22; 95% CI 1.30-7.92), trunk muscles' tone disorder ( = 0.002; OR 4.81; 95% CI 1.75-13.25), SP ( = 0.006; OR 6.6; 95% CI 1.46-30.23), poor motor function ( = 0.02; OR 5.5; 95% CI 1.2-25.2), and E ( = 0.03; OR 2.6; standard error 0.44) as risk factors of NHD. The accuracy of the model was 77%. PredictMed identified trunk muscles' tone disorder, severe scoliosis, E, and SP as risk factors of NHD in teenagers with CP.

摘要

神经肌肉型髋关节发育不良(NHD)是脑瘫(CP)患者中常见且严重的问题。以往研究迄今仅确定痉挛(SP)和粗大运动功能分类系统的高水平为与NHD相关的因素。本研究的目的是开发一种机器学习模型,以识别NHD的其他风险因素。这是一项对102名青少年脑瘫患者(60名男性,42名女性;60名住院患者,42名门诊患者;平均年龄16.5±1.2岁,范围12 - 18岁)进行的横断面多中心描述性研究。在2007年至2017年期间收集了病因、诊断、SP、癫痫(E)、临床病史和功能评估等数据。髋关节发育不良定义为骨盆X线片上股骨头外侧移位百分比>33%。开发了一种名为PredictMed的逻辑回归预测模型,以识别NHD的风险因素。28名(27%)青少年脑瘫患者患有NHD,其中18名(67%)髋关节脱位。逻辑回归模型确定步行能力差(<0.001;比值比[OR]无穷大;95%置信区间[CI]无穷大)、脊柱侧弯(=0.01;OR 3.22;95% CI 1.30 - 7.92)、躯干肌张力障碍(=0.002;OR 4.81;95% CI 1.75 - 13.25)、SP(=0.006;OR 6.6;95% CI 1.46 - 30.23)、运动功能差(=0.02;OR 5.5;95% CI 1.2 - 25.2)和E(=0.03;OR 2.6;标准误0.44)为NHD的风险因素。该模型的准确率为77%。PredictMed确定躯干肌张力障碍、严重脊柱侧弯、E和SP为青少年脑瘫患者NHD的风险因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验