Suppr超能文献

识别需要神经毒素治疗的脑瘫儿童计算表型的预测模型。

Prediction Model for Identifying Computational Phenotypes of Children with Cerebral Palsy Needing Neurotoxin Treatments.

机构信息

Department of Computer Science, Hal Marcus College of Science & Engineering, University of West Florida, Pensacola, FL 32514, USA.

EEAP H Germain and Department of Pediatric Orthopaedic Surgery, Lenval Foundation, University Pediatric Hospital of Nice, 06000 Nice, France.

出版信息

Toxins (Basel). 2022 Dec 28;15(1):20. doi: 10.3390/toxins15010020.

Abstract

Factors associated with neurotoxin treatments in children with cerebral palsy (CP) are poorly studied. We developed and externally validated a prediction model to identify the prognostic phenotype of children with CP who require neurotoxin injections. We conducted a longitudinal, international, multicenter, double-blind descriptive study of 165 children with CP (mean age 16.5 ± 1.2 years, range 12−18 years) with and without neurotoxin treatments. We collected functional and clinical data from 2005 to 2020, entered them into the BTX-PredictMed machine-learning model, and followed the guidelines, “Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis”. In the univariate analysis, neuromuscular scoliosis (p = 0.0014), equines foot (p < 0.001) and type of etiology (prenatal > peri/postnatal causes, p = 0.05) were linked with neurotoxin treatments. In the multivariate analysis, upper limbs (p < 0.001) and trunk muscle tone disorders (p = 0.02), the presence of spasticity (p = 0.01), dystonia (p = 0.004), and hip dysplasia (p = 0.005) were strongly associated with neurotoxin injections; and the average accuracy, sensitivity, and specificity was 75%. These results have helped us identify, with good accuracy, the clinical features of prognostic phenotypes of subjects likely to require neurotoxin injections.

摘要

与脑瘫(CP)儿童神经毒素治疗相关的因素研究甚少。我们开发并外部验证了一个预测模型,以确定需要神经毒素注射的 CP 儿童的预后表型。我们进行了一项纵向、国际、多中心、双盲描述性研究,纳入了 165 名 CP 儿童(平均年龄 16.5 ± 1.2 岁,范围 12-18 岁),包括接受和未接受神经毒素治疗的儿童。我们从 2005 年至 2020 年收集了功能和临床数据,将其输入到 BTX-PredictMed 机器学习模型中,并遵循“用于个体预后或诊断的多变量预测模型的透明报告”指南。在单因素分析中,神经肌肉性脊柱侧凸(p = 0.0014)、马蹄足(p < 0.001)和病因类型(产前 > 围生期/产后原因,p = 0.05)与神经毒素治疗相关。在多因素分析中,上肢(p < 0.001)和躯干肌肉张力障碍(p = 0.02)、痉挛存在(p = 0.01)、肌张力障碍(p = 0.004)和髋关节发育不良(p = 0.005)与神经毒素注射强烈相关;平均准确性、敏感性和特异性为 75%。这些结果帮助我们准确识别了可能需要神经毒素注射的受试者的预后表型的临床特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e167/9867395/302b6f76b5d7/toxins-15-00020-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验