Zarach Zuzanna, Trzciński Konrad, Łapiński Marcin, Lisowska-Oleksiak Anna, Szkoda Mariusz
Faculty of Chemistry, Department of Chemistry and Technology of Functional Materials, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland.
Materials (Basel). 2020 Dec 18;13(24):5791. doi: 10.3390/ma13245791.
In this study, we present a novel strategy for enhancing polyaniline stability and thus obtaining an electrode material with practical application in supercapacitors. A promising (graphite foil/polyaniline/poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) GF/PANI/PEDOT:PSS) electrode material was characterized and used in the construction of a symmetric supercapacitor that provides an outstanding high power density. For this purpose, the electropolymerization of PANI was carried out on a graphite foil and then a thin protective layer of PEDOT:PSS was deposited. The presence of the nanometer PEDOT:PSS layer made it possible to widen the electroactivity potential range of the electrode material. Moreover, the synergy between materials positively affected the amount of accumulated charge, and thus the thin PEDOT:PSS layer contributed to enhancing the specific capacity of the electrode material. The electrochemical performance of the GF/PANI/PEDOT:PSS electrode, as well as the symmetrical supercapacitor, was investigated by cyclic voltammetry and galvanostatic charge/discharge cycles in 1 M HSO at room temperature. The fabricated electrode material shows a high specific capacitance () of 557.4 Fg and areal capacitance () of 2600 mF·cm in 1 M HSO at a current density of 200 mA·cm (~4 A·g). The supercapacitor performance was studied and the results show that a thin PEDOT:PSS layer enables cycling stability improvement of the device from 54% to 67% after 10,000 cycles, and provides a high specific capacity (159.8 F·g) and a maximum specific power (18,043 W·kg) for practical applications.
在本研究中,我们提出了一种提高聚苯胺稳定性的新策略,从而获得一种在超级电容器中有实际应用的电极材料。对一种有前景的(石墨箔/聚苯胺/聚(3,4-乙撑二氧噻吩):聚(苯乙烯磺酸盐)GF/PANI/PEDOT:PSS)电极材料进行了表征,并将其用于构建具有出色高功率密度的对称超级电容器。为此,在石墨箔上进行聚苯胺的电聚合,然后沉积一层薄的PEDOT:PSS保护层。纳米PEDOT:PSS层的存在使得电极材料的电活性电位范围得以拓宽。此外,材料之间的协同作用对累积电荷量产生了积极影响,因此薄的PEDOT:PSS层有助于提高电极材料的比电容。通过循环伏安法和在室温下于1 M HSO中进行恒电流充/放电循环,研究了GF/PANI/PEDOT:PSS电极以及对称超级电容器的电化学性能。所制备的电极材料在1 M HSO中、电流密度为200 mA·cm(~4 A·g)时,显示出557.4 F/g的高比电容()和2600 mF·cm的面积电容()。对超级电容器性能进行了研究,结果表明,薄的PEDOT:PSS层使器件在10000次循环后的循环稳定性从54%提高到67%,并为实际应用提供了高比容量(159.8 F·g)和最大比功率(18043 W·kg)。