Tat Dat Tô, Frédéric Protin, Hang Nguyen T T, Jules Martel, Duc Thang Nguyen, Piffault Charles, Willy Rodríguez, Susely Figueroa, Lê Hông Vân, Tuschmann Wilderich, Tien Zung Nguyen
Centre de Mathématiques Laurent-Schwartz, École Polytechnique Cour Vaneau, 91120 Palaiseau, France.
Torus Actions SAS, 3 Avenue Didier Daurat, 31400 Toulouse, France.
Biology (Basel). 2020 Dec 18;9(12):477. doi: 10.3390/biology9120477.
We introduce the concept of epidemic-fitted wavelets which comprise, in particular, as special cases the number I(t) of infectious individuals at time in classical SIR models and their derivatives. We present a novel method for modelling epidemic dynamics by a model selection method using wavelet theory and, for its applications, machine learning-based curve fitting techniques. Our universal models are functions that are finite linear combinations of epidemic-fitted wavelets. We apply our method by modelling and forecasting, based on the Johns Hopkins University dataset, the spread of the current Covid-19 (SARS-CoV-2) epidemic in France, Germany, Italy and the Czech Republic, as well as in the US federal states New York and Florida.
我们引入了疫情拟合小波的概念,特别地,在经典SIR模型中,它作为特殊情况包含了时刻t的感染个体数量I(t)及其导数。我们提出了一种通过使用小波理论的模型选择方法来对疫情动态进行建模的新方法,并且在其应用中,还使用了基于机器学习的曲线拟合技术。我们的通用模型是疫情拟合小波的有限线性组合函数。我们基于约翰霍普金斯大学数据集,通过建模和预测,将我们的方法应用于法国、德国、意大利和捷克共和国,以及美国纽约州和佛罗里达州当前新冠疫情(SARS-CoV-2)的传播情况。