Suppr超能文献

共生“多面手”:海洋动物与化学合成固氮细菌之间的伙伴关系

The symbiotic 'all-rounders': Partnerships between marine animals and chemosynthetic nitrogen-fixing bacteria.

作者信息

Petersen Jillian M, Yuen Benedict

机构信息

Centre for Microbiology and Environmental Systems Science, University of Vienna

出版信息

Appl Environ Microbiol. 2021 Mar 1;87(5). doi: 10.1128/AEM.02129-20. Epub 2020 Dec 18.

Abstract

Nitrogen fixation is a widespread metabolic trait in certain types of microorganisms called diazotrophs. Bioavailable nitrogen is limited in various habitats on land and in the sea, and accordingly, a range of plant, animal, and single-celled eukaryotes have evolved symbioses with diverse diazotrophic bacteria, with enormous economic and ecological benefits. Until recently, all known nitrogen-fixing symbionts were heterotrophs such as nodulating rhizobia, or photoautotrophs such as cyanobacteria. In 2016, the first chemoautotrophic nitrogen-fixing symbionts were discovered in a common family of marine clams, the Lucinidae. Chemosynthetic nitrogen-fixing symbionts use the chemical energy stored in reduced sulfur compounds to power carbon and nitrogen fixation, making them metabolic 'all-rounders' with multiple functions in the symbiosis. This distinguishes them from heterotrophic symbionts that require a source of carbon from their host, and their chemosynthetic metabolism distinguishes them from photoautotrophic symbionts that produce oxygen, a potent inhibitor of nitrogenase. In this review, we consider evolutionary aspects of this discovery, by comparing strategies that have evolved for hosting intracellular nitrogen-fixing symbionts in plants and animals. The symbiosis between lucinid clams and chemosynthetic nitrogen-fixing bacteria also has important ecological impacts, as they form a nested symbiosis with endangered marine seagrasses. Notably, nitrogen fixation by lucinid symbionts may help support seagrass health by providing a source of nitrogen in seagrass habitats. These discoveries were enabled by new techniques for understanding the activity of microbial populations in natural environments. However, an animal (or plant) host represents a diverse landscape of microbial niches due to its structural, chemical, immune and behavioural properties. In future, methods that resolve microbial activity at the single cell level will provide radical new insights into the regulation of nitrogen fixation in chemosynthetic symbionts, shedding new light on the evolution of nitrogen-fixing symbioses in contrasting hosts and environments.

摘要

固氮作用是某些被称为固氮菌的微生物中广泛存在的一种代谢特性。陆地和海洋的各种栖息地中生物可利用的氮是有限的,因此,一系列植物、动物和单细胞真核生物已经与多种固氮细菌进化出共生关系,带来了巨大的经济和生态效益。直到最近,所有已知的固氮共生体都是异养生物,如结瘤根瘤菌,或光合自养生物,如蓝细菌。2016年,在海洋蛤蜊的一个常见科——海笋科中发现了第一批化能自养固氮共生体。化学合成固氮共生体利用储存在还原态硫化合物中的化学能来驱动碳固定和氮固定,使它们成为共生关系中具有多种功能的代谢“多面手”。这使它们有别于需要从宿主获取碳源的异养共生体,它们的化学合成代谢也使它们有别于产生氧气(一种固氮酶的强效抑制剂)的光合自养共生体。在这篇综述中,我们通过比较植物和动物中为容纳细胞内固氮共生体而进化出的策略,来探讨这一发现的进化方面。海笋科蛤蜊与化学合成固氮细菌之间的共生关系也具有重要的生态影响,因为它们与濒危的海洋海草形成了嵌套共生关系。值得注意的是,海笋科共生体的固氮作用可能通过在海草栖息地提供氮源来帮助维持海草的健康。这些发现得益于用于了解自然环境中微生物种群活动的新技术。然而,动物(或植物)宿主由于其结构、化学、免疫和行为特性,代表了一个多样化的微生物生态位景观。未来,能够解析单细胞水平微生物活动的方法将为化学合成共生体中固氮作用的调控提供全新的见解,为不同宿主和环境中固氮共生关系的进化带来新的启示。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0ffd/8090883/5da1f9fb7ac1/AEM.02129-20-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验