Suppr超能文献

携带有功能不同共生菌的宿主细胞中中心碳代谢的协同分裂。

Syntrophic splitting of central carbon metabolism in host cells bearing functionally different symbiotic bacteria.

机构信息

Department of Entomology, Cornell University, Ithaca, NY, 14853, USA.

Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA.

出版信息

ISME J. 2020 Aug;14(8):1982-1993. doi: 10.1038/s41396-020-0661-z. Epub 2020 Apr 29.

Abstract

Insects feeding on the nutrient-poor diet of xylem plant sap generally bear two microbial symbionts that are localized to different organs (bacteriomes) and provide complementary sets of essential amino acids (EAAs). Here, we investigate the metabolic basis for the apparent paradox that xylem-feeding insects are under intense selection for metabolic efficiency but incur the cost of maintaining two symbionts for functions mediated by one symbiont in other associations. Using stable isotope analysis of central carbon metabolism and metabolic modeling, we provide evidence that the bacteriomes of the spittlebug Clastoptera proteus display high rates of aerobic glycolysis, with syntrophic splitting of glucose oxidation. Specifically, our data suggest that one bacteriome (containing the bacterium Sulcia, which synthesizes seven EAAs) predominantly processes glucose glycolytically, producing pyruvate and lactate, and the exported pyruvate and lactate is assimilated by the second bacteriome (containing the bacterium Zinderia, which synthesizes three energetically costly EAAs) and channeled through the TCA cycle for energy generation by oxidative phosphorylation. We, furthermore, calculate that this metabolic arrangement supports the high ATP demand in Zinderia bacteriomes for Zinderia-mediated synthesis of energy-intensive EAAs. We predict that metabolite cross-feeding among host cells may be widespread in animal-microbe symbioses utilizing low-nutrient diets.

摘要

以木质部植物汁液为食的昆虫通常携带两种微生物共生体,这两种共生体定位于不同的器官(细菌体),并提供互补的必需氨基酸(EAA)。在这里,我们研究了木质部取食昆虫在代谢效率方面受到强烈选择,但却要为一个共生体介导的功能维持两个共生体的成本的明显悖论的代谢基础。通过对中心碳代谢的稳定同位素分析和代谢建模,我们提供了证据表明,沫蝉 Clastoptera proteus 的细菌体显示出高的需氧糖酵解率,并伴有葡萄糖氧化的协同分解。具体来说,我们的数据表明,一个细菌体(含有合成七种 EAA 的细菌 Sulcia)主要通过糖酵解处理葡萄糖,产生丙酮酸和乳酸,而导出的丙酮酸和乳酸被第二个细菌体(含有合成三种能量昂贵的 EAA 的细菌 Zinderia)吸收,并通过三羧酸循环进行能量生成的氧化磷酸化。此外,我们计算出这种代谢安排支持 Zinderia 细菌体中 Zinderia 介导的能量密集型 EAA 合成所需的高 ATP 需求。我们预测,在利用低营养饮食的动物-微生物共生体中,宿主细胞之间的代谢物交叉喂养可能很普遍。

相似文献

本文引用的文献

8
Modeling metabolism of the human gut microbiome.人类肠道微生物组的代谢建模。
Curr Opin Biotechnol. 2018 Jun;51:90-96. doi: 10.1016/j.copbio.2017.12.005. Epub 2017 Dec 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验