Schröter Niels B M, Robredo Iñigo, Klemenz Sebastian, Kirby Robert J, Krieger Jonas A, Pei Ding, Yu Tianlun, Stolz Samuel, Schmitt Thorsten, Dudin Pavel, Kim Timur K, Cacho Cephise, Schnyder Andreas, Bergara Aitor, Strocov Vladimir N, de Juan Fernando, Vergniory Maia G, Schoop Leslie M
Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland.
Donostia International Physics Center, 20018 Donostia-San Sebastian, Spain.
Sci Adv. 2020 Dec 18;6(51). doi: 10.1126/sciadv.abd5000. Print 2020 Dec.
Magnetic Weyl semimetals are a newly discovered class of topological materials that may serve as a platform for exotic phenomena, such as axion insulators or the quantum anomalous Hall effect. Here, we use angle-resolved photoelectron spectroscopy and ab initio calculations to discover Weyl cones in CoS, a ferromagnet with pyrite structure that has been long studied as a candidate for half-metallicity, which makes it an attractive material for spintronic devices. We directly observe the topological Fermi arc surface states that link the Weyl nodes, which will influence the performance of CoS as a spin injector by modifying its spin polarization at interfaces. In addition, we directly observe a minority-spin bulk electron pocket in the corner of the Brillouin zone, which proves that CoS cannot be a true half-metal.
磁性外尔半金属是一类新发现的拓扑材料,可作为奇异现象的平台,如轴子绝缘体或量子反常霍尔效应。在此,我们利用角分辨光电子能谱和从头算计算,在具有黄铁矿结构的铁磁体CoS中发现了外尔锥,CoS长期以来一直被研究作为半金属性的候选材料,这使其成为自旋电子器件的有吸引力的材料。我们直接观察到连接外尔节点的拓扑费米弧表面态,这将通过改变其在界面处的自旋极化来影响CoS作为自旋注入器的性能。此外,我们直接观察到在布里渊区角落的少数自旋体电子口袋,这证明CoS不可能是真正的半金属。