Charles Seleipiri, Aubry Guillaume, Chou Han-Ting, Paaby Annalise B, Lu Hang
Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 313 Ferst Drive NW, Atlanta, Georgia 30332, United States.
Interdisciplinary Program in Bioengineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, United States.
Anal Chem. 2021 Jan 26;93(3):1369-1376. doi: 10.1021/acs.analchem.0c02966. Epub 2020 Dec 23.
Recent development in fluorescence-based molecular tools has contributed significantly to developmental studies, including embryogenesis. Many of these tools rely on multiple steps of sample manipulation, so obtaining large sample sizes presents a major challenge as it can be labor-intensive and time-consuming. However, large sample sizes are required to uncover critical aspects of embryogenesis, for example, subtle phenotypic differences or gene expression dynamics. This problem is particularly relevant for single-molecule fluorescence in situ hybridization (smFISH) studies in embryogenesis. Microfluidics can help address this issue by allowing a large number of samples and parallelization of experiments. However, performing efficient reagent exchange on chip for large numbers of embryos remains a bottleneck. Here, we present a microfluidic pipeline for large-scale smFISH imaging of embryos with minimized labor. We designed embryo traps and engineered a protocol allowing for efficient chemical exchange for hundreds of embryos simultaneously. Furthermore, the device design and small footprint optimize imaging throughput by facilitating spatial registration and enabling minimal user input. We conducted the smFISH protocol on chip and demonstrated that image quality is preserved. With one device replacing the equivalent of 10 glass slides of embryos mounted manually, our microfluidic approach greatly increases throughput. Finally, to highlight the capability of our platform to perform longitudinal studies with high temporal resolution, we conducted a temporal analysis of gene expression in early embryos. The method demonstrated here paves the way for systematic high-temporal-resolution studies that will benefit large-scale RNAi and drug screens and in systems beyond embryos.
基于荧光的分子工具的最新进展对包括胚胎发生在内的发育研究做出了重大贡献。这些工具中的许多都依赖于多个样本处理步骤,因此获取大量样本是一项重大挑战,因为这可能既费力又耗时。然而,需要大量样本才能揭示胚胎发生的关键方面,例如细微的表型差异或基因表达动态。这个问题在胚胎发生的单分子荧光原位杂交(smFISH)研究中尤为突出。微流控技术可以通过允许处理大量样本和实现实验并行化来帮助解决这个问题。然而,在芯片上对大量胚胎进行高效的试剂交换仍然是一个瓶颈。在这里,我们展示了一种微流控流程,用于对胚胎进行大规模smFISH成像,同时将人工操作降至最低。我们设计了胚胎捕获器,并设计了一种方案,允许同时对数百个胚胎进行高效的化学交换。此外,该设备的设计和小尺寸通过促进空间配准和减少用户输入来优化成像通量。我们在芯片上执行了smFISH方案,并证明图像质量得以保留。我们的微流控方法用一台设备取代了相当于10张手动装载胚胎的载玻片,大大提高了通量。最后,为了突出我们的平台进行高时间分辨率纵向研究的能力,我们对早期胚胎中的基因表达进行了时间分析。这里展示的方法为系统的高时间分辨率研究铺平了道路,这将有利于大规模RNA干扰和药物筛选以及胚胎以外的系统。