Suppr超能文献

具有高刚度的玻璃纤维调节形状变化结构的4D打印

4D Printing of Glass Fiber-Regulated Shape Shifting Structures with High Stiffness.

作者信息

Weng Shayuan, Kuang Xiao, Zhang Qiang, Hamel Craig M, Roach Devin J, Hu Ning, Jerry Qi H

机构信息

The George W. Woodruff School of Mechanical Engineering Georgia Institute of Technology, Atlanta, Georgia 30332, United States.

College of Aerospace Engineering, Chongqing University, Chongqing 400044, PR China.

出版信息

ACS Appl Mater Interfaces. 2021 Mar 24;13(11):12797-12804. doi: 10.1021/acsami.0c18988. Epub 2020 Dec 23.

Abstract

4D printing allows 3D printed structures to change their shapes overtime under external stimuli, finding a wide range of potential applications in actuators, soft robotics, active metamaterials, flexible electronics, and biomedical devices. However, most 4D printing uses soft polymers to accommodate large strain shape-changing capability at the price of low stiffness, which impedes their engineering applications. Here, we demonstrate an approach to design and manufacture self-morphing structures with large deformation and high modulus (∼4.8 GPa). The structures are printed by multimaterial direct ink writing (DIW) using composite inks that contain a high volume fraction of solvent, photocurable polymer resin, and short glass fibers as well as fumed silica. During printing, the glass fibers undergo shear-induced alignment through the nozzle, leading to highly anisotropic mechanical properties. The solvent is then evaporated, during which the aligned glass fibers enable anisotropic shrinkage in the parallel and perpendicular directions to the fiber alignment for shape shifting. A final postphotocuring step is applied to further increase the stiffness of the composite from ∼300 MPa to ∼4.8 GPa. A finite element analysis (FEA) model is developed to predict the influence of the solvent, fiber contents, and fiber orientation on the shape shifting. We demonstrate the anisotropic volume shrinkage of the structures can be used as active hinges to transform printed two-dimensional structures into complex three-dimensional structures with large shape-shifting and outstanding mechanical properties. This strategy for fabricating composite structures with programmable architectures and excellent mechanical properties shows potential applications in morphing lightweight structures with load-bearing capabilities.

摘要

4D打印使3D打印结构能够在外部刺激下随时间改变形状,在致动器、软体机器人、有源超材料、柔性电子和生物医学设备等领域有着广泛的潜在应用。然而,大多数4D打印使用软聚合物来实现大应变形状变化能力,但代价是刚度较低,这阻碍了它们在工程中的应用。在此,我们展示了一种设计和制造具有大变形和高模量(约4.8 GPa)的自变形结构的方法。这些结构通过多材料直接墨水书写(DIW)使用复合墨水进行打印,复合墨水包含高体积分数的溶剂、光固化聚合物树脂、短玻璃纤维以及气相二氧化硅。在打印过程中,玻璃纤维通过喷嘴经历剪切诱导排列,从而导致高度各向异性的机械性能。然后溶剂蒸发,在此期间,排列的玻璃纤维使得在与纤维排列平行和垂直方向上产生各向异性收缩以实现形状变化。最后进行光后固化步骤,以进一步将复合材料的刚度从约300 MPa提高到约4.8 GPa。开发了有限元分析(FEA)模型来预测溶剂、纤维含量和纤维取向对形状变化的影响。我们证明了结构的各向异性体积收缩可以用作主动铰链,将打印的二维结构转变为具有大形状变化和出色机械性能的复杂三维结构。这种制造具有可编程结构和优异机械性能的复合结构的策略在具有承重能力的变形轻质结构中显示出潜在应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验