Suppr超能文献

用于高刚度4D打印电控多功能结构的多尺度异质聚合物复合材料。

Multiscale Heterogeneous Polymer Composites for High Stiffness 4D Printed Electrically Controllable Multifunctional Structures.

作者信息

Ferrer Javier M Morales, Cruz Ramón E Sánchez, Caplan Sophie, Van Rees Wim M, Boley J William

机构信息

Mechanical Engineering Department, Boston University, Boston, MA, 02215, USA.

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.

出版信息

Adv Mater. 2024 Jul;36(30):e2405505. doi: 10.1002/adma.202405505. Epub 2024 May 20.

Abstract

4D printing is an emerging field where 3D printing techniques are used to pattern stimuli-responsive materials to create morphing structures, with time serving as the fourth dimension. However, current materials utilized for 4D printing are typically soft, exhibiting an elastic modulus (E) range of 10 to 10 MPa during shape change. This restricts the scalability, actuation stress, and load-bearing capabilities of the resulting structures. To overcome these limitations, multiscale heterogeneous polymer composites are introduced as a novel category of stiff, thermally responsive 4D printed materials. These inks exhibit an E that is four orders of magnitude greater than that of existing 4D printed materials and offer tunable electrical conductivities for simultaneous Joule heating actuation and self-sensing capabilities. Utilizing electrically controllable bilayers as building blocks, a flat geometry is designed and printed that morphs into a 3D self-standing lifting robot, setting new records for weight-normalized load lifted and actuation stress when compared to other 3D printed actuators. Furthermore, the ink palette is employed to create and print planar lattice structures that transform into various self-supporting complex 3D shapes. These contributions are integrated into a 4D printed electrically controlled multigait crawling robotic lattice structure that can carry 144 times its own weight.

摘要

4D打印是一个新兴领域,它利用3D打印技术对刺激响应材料进行图案化处理,以创建可变形结构,时间作为第四维度。然而,目前用于4D打印的材料通常较软,在形状变化过程中弹性模量(E)范围为10至10兆帕。这限制了所得结构的可扩展性、驱动应力和承载能力。为了克服这些限制,引入了多尺度异质聚合物复合材料作为一类新型的刚性、热响应4D打印材料。这些油墨的弹性模量比现有的4D打印材料大四个数量级,并提供可调的电导率,以实现同时的焦耳热驱动和自传感能力。利用电控双层作为构建模块,设计并打印了一种平面结构,该结构可变形为一个3D自立式提升机器人,与其他3D打印致动器相比,在重量归一化负载提升和驱动应力方面创造了新纪录。此外,利用这种油墨创建并打印平面晶格结构,这些结构可转变为各种自支撑的复杂3D形状。这些成果被集成到一个4D打印的电控多步态爬行机器人晶格结构中,该结构能够承载其自身重量144倍的负载。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验