Suppr超能文献

基于复合子空间正交分解的低复杂度最小方差波束形成器。

A Low-complexity Minimum-variance Beamformer Based on Orthogonal Decomposition of the Compounded Subspace.

机构信息

Department of Electronic Engineering, Fudan University, Shanghai, China.

Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention of Shanghai, Shanghai, China.

出版信息

Ultrason Imaging. 2021 Jan;43(1):3-18. doi: 10.1177/0161734620973945.

Abstract

Minimum-variance (MV) beamforming, as a typical adaptive beamforming method, has been widely studied in medical ultrasound imaging. This method achieves higher spatial resolution than traditional delay-and-sum (DAS) beamforming by minimizing the total output power while maintaining the desired signals. However, it suffers from high computational complexity due to the heavy calculation load when determining the inverse of the high-dimensional matrix. Low-complexity MV algorithms have been studied recently. In this study, we propose a novel MV beamformer based on orthogonal decomposition of the compounded subspace (CS) of the covariance matrix in synthetic aperture (SA) imaging, which aims to reduce the dimensions of the covariance matrix and therefore reduce the computational complexity. Multiwave spatial smoothing is applied to the echo signals for the accurate estimation of the covariance matrix, and adaptive weight vectors are calculated from the low-dimensional subspace of the original covariance matrix. We conducted simulation, experimental and in vivo studies to verify the performance of the proposed method. The results indicate that the proposed method performs well in maintaining the advantage of high spatial resolution and effectively reduces the computational complexity compared with the standard MV beamformer. In addition, the proposed method shows good robustness against sound velocity errors.

摘要

最小方差 (MV) 波束形成作为一种典型的自适应波束形成方法,在医学超声成像中得到了广泛的研究。该方法通过在保持期望信号的同时最小化总输出功率,实现了比传统延迟求和 (DAS) 波束形成更高的空间分辨率。然而,由于在确定高维矩阵的逆时计算负载很重,因此它的计算复杂度很高。最近已经研究了低复杂度 MV 算法。在这项研究中,我们提出了一种新的基于合成孔径 (SA) 成像中协方差矩阵复合子空间 (CS) 的正交分解的 MV 波束形成器,旨在降低协方差矩阵的维数,从而降低计算复杂度。多波空间平滑应用于回波信号,以准确估计协方差矩阵,并从原始协方差矩阵的低维子空间计算自适应权向量。我们进行了模拟、实验和体内研究,以验证该方法的性能。结果表明,与标准 MV 波束形成器相比,该方法在保持高空间分辨率优势的同时,有效地降低了计算复杂度。此外,该方法对声速误差具有良好的鲁棒性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验