Suppr超能文献

早期非鳞状非小细胞肺癌个体化免疫预后标志物的建立与验证。

Development and Validation of an Individualized Immune Prognostic Signature in Early-Stage Nonsquamous Non-Small Cell Lung Cancer.

机构信息

Department of Radiation Oncology, Stanford University School of Medicine, Palo Alto, California.

Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.

出版信息

JAMA Oncol. 2017 Nov 1;3(11):1529-1537. doi: 10.1001/jamaoncol.2017.1609.

Abstract

IMPORTANCE

The prevalence of early-stage non-small cell lung cancer (NSCLC) is expected to increase with recent implementation of annual screening programs. Reliable prognostic biomarkers are needed to identify patients at a high risk for recurrence to guide adjuvant therapy.

OBJECTIVE

To develop a robust, individualized immune signature that can estimate prognosis in patients with early-stage nonsquamous NSCLC.

DESIGN, SETTING, AND PARTICIPANTS: This retrospective study analyzed the gene expression profiles of frozen tumor tissue samples from 19 public NSCLC cohorts, including 18 microarray data sets and 1 RNA-Seq data set for The Cancer Genome Atlas (TCGA) lung adenocarcinoma cohort. Only patients with nonsquamous NSCLC with clinical annotation were included. Samples were from 2414 patients with nonsquamous NSCLC, divided into a meta-training cohort (729 patients), meta-testing cohort (716 patients), and 3 independent validation cohorts (439, 323, and 207 patients). All patients underwent surgery with a negative surgical margin, received no adjuvant or neoadjuvant therapy, and had publicly available gene expression data and survival information. Data were collected from July 22 through September 8, 2016.

MAIN OUTCOMES AND MEASURES

Overall survival.

RESULTS

Of 2414 patients (1205 men [50%], 1111 women [46%], and 98 of unknown sex [4%]; median age [range], 64 [15-90] years), a prognostic immune signature of 25 gene pairs consisting of 40 unique genes was constructed using the meta-training data set. In the meta-testing and validation cohorts, the immune signature significantly stratified patients into high- vs low-risk groups in terms of overall survival across and within subpopulations with stage I, IA, IB, or II disease and remained as an independent prognostic factor in multivariate analyses (hazard ratio range, 1.72 [95% CI, 1.26-2.33; P < .001] to 2.36 [95% CI, 1.47-3.79; P < .001]) after adjusting for clinical and pathologic factors. Several biological processes, including chemotaxis, were enriched among genes in the immune signature. The percentage of neutrophil infiltration (5.6% vs 1.8%) and necrosis (4.6% vs 1.5%) was significantly higher in the high-risk immune group compared with the low-risk groups in TCGA data set (P < .003). The immune signature achieved a higher accuracy (mean concordance index [C-index], 0.64) than 2 commercialized multigene signatures (mean C-index, 0.53 and 0.61) for estimation of survival in comparable validation cohorts. When integrated with clinical characteristics such as age and stage, the composite clinical and immune signature showed improved prognostic accuracy in all validation data sets relative to molecular signatures alone (mean C-index, 0.70 vs 0.63) and another commercialized clinical-molecular signature (mean C-index, 0.68 vs 0.65).

CONCLUSIONS AND RELEVANCE

The proposed clinical-immune signature is a promising biomarker for estimating overall survival in nonsquamous NSCLC, including early-stage disease. Prospective studies are needed to test the clinical utility of the biomarker in individualized management of nonsquamous NSCLC.

摘要

重要性

随着近年来年度筛查计划的实施,早期非小细胞肺癌(NSCLC)的患病率预计将会增加。需要可靠的预后生物标志物来识别复发风险高的患者,以指导辅助治疗。

目的

开发一种稳健的、个体化的免疫特征,以估计早期非鳞状 NSCLC 患者的预后。

设计、地点和参与者:本回顾性研究分析了 19 个公共 NSCLC 队列的冷冻肿瘤组织样本的基因表达谱,包括 18 个微阵列数据集和 1 个来自癌症基因组图谱(TCGA)肺腺癌队列的 RNA-Seq 数据集。仅纳入有临床注释的非鳞状 NSCLC 患者。样本来自 2414 名非鳞状 NSCLC 患者,分为荟萃训练队列(729 名患者)、荟萃测试队列(716 名患者)和 3 个独立验证队列(439 名、323 名和 207 名患者)。所有患者均接受了阴性手术切缘的手术,未接受辅助或新辅助治疗,且有公开的基因表达数据和生存信息。数据于 2016 年 7 月 22 日至 9 月 8 日收集。

主要结局和测量

总生存期。

结果

在 2414 名患者(1205 名男性[50%],1111 名女性[46%]和 98 名未知性别[4%];中位年龄[范围],64[15-90]岁)中,使用荟萃训练数据集构建了由 25 对基因对组成的 40 个独特基因的预后免疫特征。在荟萃测试和验证队列中,免疫特征在整个亚组和亚组内,在 I 期、IA 期、IB 期或 II 期疾病中,均能显著地将患者分为高风险和低风险组,并且在多变量分析中仍然是一个独立的预后因素(风险比范围,1.72[95%CI,1.26-2.33;P<.001]至 2.36[95%CI,1.47-3.79;P<.001]),在调整了临床和病理因素后。在免疫特征中的几个生物学过程,包括趋化作用,得到了富集。与低风险组相比,TCGA 数据集中高风险免疫组的中性粒细胞浸润(5.6%比 1.8%)和坏死(4.6%比 1.5%)百分比显著更高(P<.003)。免疫特征在可比的验证队列中比 2 种商业化的多基因特征(平均 C-指数,0.53 和 0.61)具有更高的准确性(平均一致性指数[C-指数],0.64)。当与年龄和分期等临床特征相结合时,与分子特征单独相比,复合临床和免疫特征在所有验证数据集中显示出了更高的预后准确性(平均 C-指数,0.70 比 0.63)和另一种商业化的临床-分子特征(平均 C-指数,0.68 比 0.65)。

结论和相关性

所提出的临床免疫特征是一种很有前途的非小细胞 NSCLC 患者总生存期的生物标志物,包括早期疾病。需要前瞻性研究来测试该生物标志物在非小细胞 NSCLC 个体化管理中的临床应用。

相似文献

3
Prognostic Value of a Long Non-coding RNA Signature in Localized Clear Cell Renal Cell Carcinoma.
Eur Urol. 2018 Dec;74(6):756-763. doi: 10.1016/j.eururo.2018.07.032. Epub 2018 Aug 22.
5
Clinical Significance and Immunologic Landscape of a Five-IL(R)-Based Signature in Lung Adenocarcinoma.
Front Immunol. 2021 Aug 23;12:693062. doi: 10.3389/fimmu.2021.693062. eCollection 2021.
6
A novel 12-gene signature as independent prognostic model in stage IA and IB lung squamous cell carcinoma patients.
Clin Transl Oncol. 2021 Nov;23(11):2368-2381. doi: 10.1007/s12094-021-02638-1. Epub 2021 May 24.
7
Development of a RNA-Seq Based Prognostic Signature in Lung Adenocarcinoma.
J Natl Cancer Inst. 2016 Oct 5;109(1). doi: 10.1093/jnci/djw200. Print 2017 Jan.
8
A tumor microenvironment-related mRNA-ncRNA signature for prediction early relapse and chemotherapeutic sensitivity in early-stage lung adenocarcinoma.
J Cancer Res Clin Oncol. 2021 Nov;147(11):3195-3209. doi: 10.1007/s00432-021-03718-z. Epub 2021 Jul 21.
9
Signaling pathway-based identification of extensive prognostic gene signatures for lung adenocarcinoma.
Lung Cancer. 2012 Apr;76(1):98-105. doi: 10.1016/j.lungcan.2011.09.016. Epub 2011 Nov 1.

引用本文的文献

2
Interplay between tumor mutation burden and the tumor microenvironment predicts the prognosis of pan-cancer anti-PD-1/PD-L1 therapy.
Front Immunol. 2025 Jul 24;16:1557461. doi: 10.3389/fimmu.2025.1557461. eCollection 2025.
4
Applications of gene pair methods in clinical research: advancing precision medicine.
Mol Biomed. 2025 Apr 9;6(1):22. doi: 10.1186/s43556-025-00263-w.
6
7
A Novel Effective Models for Identifying BRCA Patients and Optimizing Clinical Treatments.
Anticancer Agents Med Chem. 2025;25(5):357-369. doi: 10.2174/0118715206336019241119070155.
8
Deep neural network provides personalized treatment recommendations for metastatic breast cancer patients.
J Cancer. 2024 Oct 28;15(20):6668-6685. doi: 10.7150/jca.101293. eCollection 2024.
9
Immune regulation and prognostic prediction model establishment and validation of PSMB6 in lung adenocarcinoma.
Front Genet. 2024 Oct 23;15:1458047. doi: 10.3389/fgene.2024.1458047. eCollection 2024.
10
and Its Active Compound Coclaurine Sensitize NSCLC Cells to Cisplatin through EFHD2 Inhibition.
Pharmaceuticals (Basel). 2024 Oct 11;17(10):1356. doi: 10.3390/ph17101356.

本文引用的文献

1
Biomarker development in the precision medicine era: lung cancer as a case study.
Nat Rev Cancer. 2016 Aug;16(8):525-37. doi: 10.1038/nrc.2016.56. Epub 2016 Jul 8.
2
MetaKTSP: a meta-analytic top scoring pair method for robust cross-study validation of omics prediction analysis.
Bioinformatics. 2016 Jul 1;32(13):1966-73. doi: 10.1093/bioinformatics/btw115. Epub 2016 Mar 2.
3
Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent.
J Stat Softw. 2011 Mar;39(5):1-13. doi: 10.18637/jss.v039.i05.
4
A blood RNA signature for tuberculosis disease risk: a prospective cohort study.
Lancet. 2016 Jun 4;387(10035):2312-2322. doi: 10.1016/S0140-6736(15)01316-1. Epub 2016 Mar 24.
7
The prognostic landscape of genes and infiltrating immune cells across human cancers.
Nat Med. 2015 Aug;21(8):938-945. doi: 10.1038/nm.3909. Epub 2015 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验