Suppr超能文献

蛋白质组学数据分析用于自身免疫性疾病 SLE、RA、SS 和 ANCA 相关性血管炎的差异分析。

Proteomic Data Analysis for Differential Profiling of the Autoimmune Diseases SLE, RA, SS, and ANCA-Associated Vasculitis.

机构信息

Computational Biology & Biological Physics, Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, Lund SE-221 00, Sweden.

Center for Applied Intelligent Systems Research (CAISR), Halmstad University, Halmstad SE-301 18, Sweden.

出版信息

J Proteome Res. 2021 Feb 5;20(2):1252-1260. doi: 10.1021/acs.jproteome.0c00657. Epub 2020 Dec 23.

Abstract

Early and correct diagnosis of inflammatory rheumatic diseases (IRD) poses a clinical challenge due to the multifaceted nature of symptoms, which also may change over time. The aim of this study was to perform protein expression profiling of four systemic IRDs, systemic lupus erythematosus (SLE), ANCA-associated systemic vasculitis (SV), rheumatoid arthritis (RA), and Sjögren's syndrome (SS), and healthy controls to identify candidate biomarker signatures for differential classification. A total of 316 serum samples collected from patients with SLE, RA, SS, or SV and from healthy controls were analyzed using 394-plex recombinant antibody microarrays. Differential protein expression profiling was examined using Wilcoxon signed rank test, and condensed biomarker panels were identified using advanced bioinformatics and state-of-the art classification algorithms to pinpoint signatures reflecting each disease (raw data set available at https://figshare.com/s/3bd3848a28ef6e7ae9a9.). In this study, we were able to classify the included individual IRDs with high accuracy, as demonstrated by the ROC area under the curve (ROC AUC) values ranging between 0.96 and 0.80. In addition, the groups of IRDs could be separated from healthy controls at an ROC AUC value of 0.94. Disease-specific candidate biomarker signatures and general autoimmune signature were identified, including several deregulated analytes. This study supports the rationale of using multiplexed affinity-based technologies to reflect the biological complexity of autoimmune diseases. A multiplexed approach for decoding multifactorial complex diseases, such as autoimmune diseases, will play a significant role for future diagnostic purposes, essential to prevent severe organ- and tissue-related damage.

摘要

早期且正确诊断炎症性风湿病(IRD)是临床面临的挑战,这是由于症状具有多面性,且其随时间推移可能发生变化。本研究旨在对四种系统性 IRD(系统性红斑狼疮[SLE]、抗中性粒细胞胞浆抗体相关性系统性血管炎[SV]、类风湿关节炎[RA]和干燥综合征[SS])和健康对照者的蛋白质表达谱进行分析,以确定用于差异分类的候选生物标志物特征。使用 394 plex 重组抗体微阵列分析了来自 SLE、RA、SS 或 SV 患者和健康对照者的 316 份血清样本。使用 Wilcoxon 符号秩检验进行差异蛋白质表达谱分析,并使用先进的生物信息学和最先进的分类算法来识别反映每种疾病的浓缩生物标志物面板,以确定反映每个疾病的特征(原始数据集可在 https://figshare.com/s/3bd3848a28ef6e7ae9a9. 上获得)。在这项研究中,我们能够以高准确度对包括的个体 IRD 进行分类,ROC 曲线下面积(ROC AUC)值在 0.96 到 0.80 之间。此外,IRD 组可以与健康对照组以 ROC AUC 值 0.94 区分开来。确定了疾病特异性候选生物标志物特征和一般自身免疫特征,包括几个失调的分析物。这项研究支持使用基于多重亲和性的技术来反映自身免疫性疾病的生物学复杂性的原理。用于解码多因素复杂疾病(如自身免疫性疾病)的多重方法将在未来的诊断目的中发挥重要作用,对于预防严重的器官和组织相关损伤至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5083/7872503/ef51b3360a0f/pr0c00657_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验