Mukherjee Arnab, Abraham Suzanna, Singh Akshita, Balaji S, Mukunthan K S
Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India.
Mol Biotechnol. 2025 Apr;67(4):1269-1289. doi: 10.1007/s12033-024-01133-6. Epub 2024 Apr 2.
In the dynamic landscape of targeted therapeutics, drug discovery has pivoted towards understanding underlying disease mechanisms, placing a strong emphasis on molecular perturbations and target identification. This paradigm shift, crucial for drug discovery, is underpinned by big data, a transformative force in the current era. Omics data, characterized by its heterogeneity and enormity, has ushered biological and biomedical research into the big data domain. Acknowledging the significance of integrating diverse omics data strata, known as multi-omics studies, researchers delve into the intricate interrelationships among various omics layers. This review navigates the expansive omics landscape, showcasing tailored assays for each molecular layer through genomes to metabolomes. The sheer volume of data generated necessitates sophisticated informatics techniques, with machine-learning (ML) algorithms emerging as robust tools. These datasets not only refine disease classification but also enhance diagnostics and foster the development of targeted therapeutic strategies. Through the integration of high-throughput data, the review focuses on targeting and modeling multiple disease-regulated networks, validating interactions with multiple targets, and enhancing therapeutic potential using network pharmacology approaches. Ultimately, this exploration aims to illuminate the transformative impact of multi-omics in the big data era, shaping the future of biological research.
在靶向治疗的动态格局中,药物发现已转向理解潜在的疾病机制,高度重视分子扰动和靶点识别。这种对药物发现至关重要的范式转变以大数据为支撑,大数据是当今时代的变革力量。组学数据具有异质性和海量性,已将生物学和生物医学研究带入大数据领域。认识到整合不同组学数据层次(即多组学研究)的重要性,研究人员深入探究各种组学层之间的复杂相互关系。本综述浏览广阔的组学领域,展示从基因组到代谢组针对每个分子层的定制分析方法。产生的数据量巨大,需要复杂的信息学技术,机器学习(ML)算法成为强大的工具。这些数据集不仅完善疾病分类,还能增强诊断能力并促进靶向治疗策略的发展。通过整合高通量数据,本综述着重于针对和建模多个疾病调控网络、验证与多个靶点的相互作用以及使用网络药理学方法增强治疗潜力。最终,这一探索旨在阐明多组学在大数据时代的变革性影响,塑造生物学研究的未来。