Suppr超能文献

Dynamic motion analysis of impeller for the development of real-time flow rate estimations of a ventricular assist device.

作者信息

Shida Shuya, Masuzawa Toru, Osa Masahiro

机构信息

Faculty of Health Sciences, Morinomiya University of Medical Sciences, Osaka, Japan.

Graduate School of Science and Engineering, Ibaraki University, Hitachi, Ibaraki, Japan.

出版信息

Int J Artif Organs. 2022 Jan;45(1):52-59. doi: 10.1177/0391398820984485. Epub 2020 Dec 25.

Abstract

Implantable ventricular assist devices are used in heart failure therapy. These devices require real-time flow rate estimation for effective mechanical circulatory support. We previously developed a flow rate estimation method using the eccentric position of a magnetically levitated impeller to achieve real-time estimation. However, dynamic motion of the levitated impeller can compromise the method's performance. Therefore, in this study, we investigated the effects of dynamic motion of the levitated impeller on the time resolution and estimation accuracy of the proposed method. The magnetically levitated impeller was axially suspended and radially restricted by the passive stability in a centrifugal blood pump that we developed. The dynamic motions of impeller rotation and whirling were analyzed at various operating conditions to evaluate the reliability of estimation. The vibration response curves of the impeller revealed that the resonant rotational speed was 1300-1400 revolutions per minute (rpm). The blood pump was used as a ventricular assist device with rotational speed (over 1800 rpm) sufficiently higher than the resonant speed. The rotor-dynamic forces on the impeller (0.03-0.14 N) suppressed the whirling motion of the impeller, indicating that the dynamic motion could be stable. Although the temporal responsiveness should be determined based on the trade-offs among the estimation accuracy and time resolution, the real-time estimation capability of the proposed method was confirmed.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验