在追踪过程中,对预测位置误差的信心可以解释眼跳决策。
Confidence in predicted position error explains saccadic decisions during pursuit.
机构信息
Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.
Institute of Information and Communication Technologies, Electronics and Applied Mathematics, Université catholique de Louvain, Louvain-la-Neuve, Belgium.
出版信息
J Neurophysiol. 2021 Mar 1;125(3):748-767. doi: 10.1152/jn.00492.2019. Epub 2020 Dec 23.
A fundamental problem in motor control is the coordination of complementary movement types to achieve a common goal. As a common example, humans view moving objects through coordinated pursuit and saccadic eye movements. Pursuit is initiated and continuously controlled by retinal image velocity. During pursuit, eye position may lag behind the target. This can be compensated by the discrete execution of a catch-up saccade. The decision to trigger a saccade is influenced by both position and velocity errors, and the timing of saccades can be highly variable. The observed distributions of saccade frequency and trigger time remain poorly understood, and this decision process remains imprecisely quantified. Here, we propose a predictive, probabilistic model explaining the decision to trigger saccades during pursuit to foveate moving targets. In this model, expected position error and its associated uncertainty are predicted through Bayesian inference across noisy, delayed sensory observations (Kalman filtering). This probabilistic prediction is used to estimate the confidence that a saccade is needed (quantified through log-probability ratio), triggering a saccade upon accumulating to a fixed threshold. The model qualitatively explains behavioral observations on the frequency and trigger time distributions of saccades during pursuit over a range of target motion trajectories. Furthermore, this model makes novel predictions that saccade decisions are highly sensitive to uncertainty for small predicted position errors, but this influence diminishes as the magnitude of predicted position error increases. We suggest that this predictive, confidence-based decision-making strategy represents a fundamental principle for the probabilistic neural control of coordinated movements. This is the first stochastic dynamical systems model of pursuit-saccade coordination accounting for noise and delays in the sensorimotor system. The model uses Bayesian inference to predictively estimate visual motion, triggering saccades when confidence in predicted position error accumulates to a threshold. This model explains saccade frequency and trigger time distributions across target trajectories and makes novel predictions about the influence of sensory uncertainty in saccade decisions during pursuit.
运动控制中的一个基本问题是协调互补的运动类型以实现共同目标。作为一个常见的例子,人类通过协调的追踪和眼跳运动来观察移动的物体。追踪是由视网膜图像速度启动并持续控制的。在追踪过程中,眼睛位置可能会落后于目标。这可以通过离散执行一个追上的眼跳来补偿。触发眼跳的决定受到位置和速度误差的影响,并且眼跳的时间可以高度变化。眼跳频率和触发时间的观察分布仍然理解得很差,并且这个决策过程仍然没有被精确地量化。在这里,我们提出了一个预测性的、概率性的模型,解释了在追踪移动目标时触发眼跳的决策过程。在这个模型中,通过贝叶斯推断对跨越噪声、延迟的感觉观察(卡尔曼滤波)进行预测,可以预测期望的位置误差及其相关的不确定性。这个概率预测用于估计需要眼跳的置信度(通过对数概率比来量化),在累积到固定阈值时触发眼跳。该模型定性地解释了在一系列目标运动轨迹中追踪时眼跳频率和触发时间分布的行为观察。此外,该模型还做出了新颖的预测,即眼跳决策对小的预测位置误差的不确定性非常敏感,但随着预测位置误差的增加,这种影响会减弱。我们认为,这种预测性的、基于置信度的决策策略代表了协调运动的概率神经控制的基本原则。这是第一个考虑传感器运动系统中的噪声和延迟的追踪-眼跳协调的随机动力系统模型。该模型使用贝叶斯推断来预测性地估计视觉运动,当对预测位置误差的置信度累积到阈值时触发眼跳。该模型解释了在目标轨迹上的眼跳频率和触发时间分布,并对追踪时眼跳决策中感觉不确定性的影响做出了新颖的预测。