LEQUiA, Institute of the Environment, University of Girona, C/ Maria Aurèlia Capmany, 69, E-17003, Girona, Spain.
Group of Environmental Microbial Ecology, Institute of Aquatic Ecology, University of Girona, C/ Maria Aurèlia Capmany, 40, E-17003, Girona, Spain.
Water Res. 2021 Feb 15;190:116748. doi: 10.1016/j.watres.2020.116748. Epub 2020 Dec 15.
The coexistence of different pollutants in groundwater is a common threat. Sustainable and resilient technologies are required for their treatment. The present study aims to evaluate microbial electrochemical technologies (METs) for treating groundwater contaminated with nitrate (NO) while containing arsenic (in form of arsenite (As(III)) as a co-contaminant. The treatment was based on the combination of nitrate reduction to dinitrogen gas and arsenite oxidation to arsenate (exhibiting less toxicity, solubility, and mobility), which can be removed more easily in further post-treatment. We operated a bioelectrochemical reactor at continuous-flow mode with synthetic contaminated groundwater (33 mg N-NO L and 5 mg As(III) L) identifying the key operational conditions. Different hydraulic retention times (HRT) were evaluated, reaching a maximum nitrate reduction rate of 519 g N-NO m d at HRT of 2.3 h with a cathodic coulombic efficiency of around 100 %. Simultaneously, arsenic oxidation was complete at all HRT tested down to 1.6 h reaching an oxidation rate of up to 90 g As(III) m d . Electrochemical and microbiological characterization of single granules suggested that arsenite at 5 mg L did not have an inhibitory effect on a denitrifying biocathode mainly represented by Sideroxydans sp. Although the coexistence of abiotic and biotic arsenic oxidation pathways was shown to be likely, microbial arsenite oxidation linked to denitrification by Achromobacter sp. was the most probable pathway. This research paves the ground towards a real application for treating groundwater with widespread pollutants.
地下水共存的不同污染物是一个常见的威胁。需要可持续和有弹性的技术来处理它们。本研究旨在评估微生物电化学技术(METs)在处理含有硝酸盐(NO)同时含有砷(以亚砷酸盐(As(III))作为共存污染物)的地下水方面的应用。该处理基于硝酸盐还原为氮气和亚砷酸盐氧化为砷酸盐(表现出较低的毒性、溶解度和迁移性)的组合,在进一步的后处理中可以更容易地去除。我们在连续流模式下操作生物电化学反应器,使用合成污染地下水(33mgN-NO L 和 5mgAs(III) L),确定关键操作条件。评估了不同的水力停留时间(HRT),在 HRT 为 2.3 小时时达到了 519gN-NO m d 的最大硝酸盐还原速率,阴极库仑效率约为 100%。同时,在所有测试的 HRT 下,砷的氧化都是完全的,低至 1.6 小时,达到了高达 90gAs(III) m d 的氧化速率。单颗粒的电化学和微生物学特性表明,5mg L 的亚砷酸盐对主要由 Sideroxydans sp. 组成的反硝化生物阴极没有抑制作用。尽管可能存在非生物和生物砷氧化途径的共存,但与 Achromobacter sp. 相关的微生物亚砷酸盐氧化与反硝化的联系是最可能的途径。这项研究为处理广泛存在污染物的地下水铺平了道路。