Suppr超能文献

螺旋卷式反渗透膜组件中氯酚去除的建模与优化。

Modeling and optimization of chlorophenol rejection for spiral wound reverse osmosis membrane modules.

机构信息

Department of Computer Science, Periyar University Constituent College of Arts and Science, Pappireddipatti Campus, Periyar University, Salem, 636 011, Tamil Nadu, India.

School of Materials Science and Engineering, Engineering Research Institute, Gyeongsang National University, Jinju, South Korea.

出版信息

Chemosphere. 2021 Apr;268:129345. doi: 10.1016/j.chemosphere.2020.129345. Epub 2020 Dec 16.

Abstract

This study shows an artificial neural network (ANN) model of chlorophenol rejection from aqueous solutions and predicting the performance of spiral wound reverse osmosis (SWRO) modules. This type of rejection shows complex non-linear dependencies on feed pressure, feed temperature, concentration, and feed flow rate. It provides a demanding test of the application of ANN model analysis to SWRO modules. The predictions are compared with experimental data obtained with SWRO modules. The overall agreement between the experimental and ANN model predicted was almost 99.9% accuracy for the chlorophenol rejection. The ANN model approach has the advantage of understanding the complex chlorophenol rejection phenomena as a function of SWRO process parameters.

摘要

本研究展示了一种用于从水溶液中去除氯酚的人工神经网络 (ANN) 模型,并预测了螺旋卷式反渗透 (SWRO) 模块的性能。这种去除方式对进料压力、进料温度、浓度和进料流速表现出复杂的非线性依赖性。这为 ANN 模型分析在 SWRO 模块中的应用提供了一个苛刻的测试。预测结果与使用 SWRO 模块获得的实验数据进行了比较。氯酚去除率的实验数据和 ANN 模型预测数据之间的总体一致性几乎达到了 99.9%。ANN 模型方法的优势在于能够理解作为 SWRO 工艺参数函数的复杂氯酚去除现象。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验