Suppr超能文献

与急诊科紧急普通外科患者院内转运相关的因素。

Factors associated with Interhospital transfers of emergency general surgery patients from emergency departments.

机构信息

Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States of America.

Department of Surgery, University of Wisconsin-Madison, Madison, WI, United States of America.

出版信息

Am J Emerg Med. 2021 Feb;40:83-88. doi: 10.1016/j.ajem.2020.12.012. Epub 2020 Dec 13.

Abstract

BACKGROUND

Emergency general surgery (EGS) conditions account for over 3 million or 7.1% of hospitalizations per year in the US. Patients are increasingly transferred from community emergency departments (EDs) to larger centers for care, and a growing demand for treating EGS conditions mandates a better understanding of how ED clinicians transfer patients. We identify patient, clinical, and organizational characteristics associated with interhospital transfers of EGS patients originating from EDs in the United States.

METHOD

We analyze data from the Agency for Healthcare Research and Quality Nationwide Emergency Department Sample (NEDS) for the years 2010-2014. Patient-level sociodemographic characteristics, clinical factors, and hospital-level factors were examined as predictors of transfer from the ED to another acute care hospital. Multivariable logistic regression analysis includes patient and hospital characteristics as predictors of transfer from an ED to another acute care hospital.

RESULTS

Of 47,442,892 ED encounters (weighted) between 2008 and 2014, 1.9% resulted in a transfer. Multivariable analysis indicates that men (Odds ratio (OR) 1.18 95% Confidence Interval (95% CI) 1.16-1.21) and older patients (OR 1.02 (95% CI 1.02-1.02)) were more likely to be transferred. Relative to patients with private health insurance, patients covered by Medicare (OR 1.09 (95% CI 1.03-1.15) or other insurance (OR 1.34 (95% CI 1.07-1.66)) had a higher odds of transfer. Odds of transfer increased with a greater number of comorbid conditions compared to patients with an EGS diagnosis alone. EGS diagnoses predicting transfer included resuscitation (OR 36.72 (95% CI 30.48-44.22)), cardiothoracic conditions (OR 8.47 (95% CI 7.44-9.63)), intestinal obstruction (OR 4.49 (95% CI 4.00-5.04)), and conditions of the upper gastrointestinal tract (OR 2.82 (95% CI 2.53-3.15)). Relative to Level I or II trauma centers, hospitals with a trauma designation III or IV had a 1.81 greater odds of transfer. Transfers were most likely to originate at rural hospitals (OR 1.69 (95% CI 1.43-2.00)) relative to urban non-teaching hospitals.

CONCLUSION

Medically complex and older patients who present at small, rural hospitals are more likely to be transferred. Future research on the unique needs of rural hospitals and timely transfer of EGS patients who require specialty surgical care have the potential to significantly improve outcomes and reduce costs.

摘要

背景

在美国,每年有超过 300 万或 7.1%的住院患者属于急诊普通外科(EGS)。患者越来越多地从社区急诊部(ED)转往更大的中心进行治疗,而对 EGS 治疗需求的增长要求我们更好地了解 ED 临床医生如何转移患者。我们确定了与美国 ED 中 EGS 患者的院内转移相关的患者、临床和组织特征。

方法

我们分析了美国医疗保健研究与质量局全国急诊部样本(NEDS)在 2010-2014 年的数据。将患者的社会人口统计学特征、临床因素和医院水平因素作为从 ED 转至另一家急性护理医院的预测因素进行了检查。多变量逻辑回归分析包括患者和医院特征作为从 ED 转至另一家急性护理医院的预测因素。

结果

在 2008 年至 2014 年间,47442892 次 ED 就诊(加权)中,有 1.9%导致转院。多变量分析表明,男性(优势比(OR)1.18 95%置信区间(95%CI)1.16-1.21)和年龄较大的患者(OR 1.02(95%CI 1.02-1.02))更有可能被转院。与私人医疗保险覆盖的患者相比,医疗保险(OR 1.09(95%CI 1.03-1.15))或其他保险(OR 1.34(95%CI 1.07-1.66))覆盖的患者更有可能转院。与仅有 EGS 诊断的患者相比,具有更多合并症的患者转院的可能性更高。预测转院的 EGS 诊断包括复苏(OR 36.72(95%CI 30.48-44.22))、心胸疾病(OR 8.47(95%CI 7.44-9.63))、肠梗阻(OR 4.49(95%CI 4.00-5.04))和上消化道疾病(OR 2.82(95%CI 2.53-3.15))。与 I 级或 II 级创伤中心相比,III 级或 IV 级创伤指定的医院转院的可能性高出 1.81 倍。与城市非教学医院相比,农村医院(OR 1.69(95%CI 1.43-2.00))的转院率更高。

结论

就诊于小而农村医院的医疗复杂且年龄较大的患者更有可能转院。关于农村医院的独特需求以及需要专科外科治疗的 EGS 患者及时转院的未来研究,有可能显著改善结果并降低成本。

相似文献

10
Percentage of Mortal Encounters Transferred in Emergency General Surgery.急诊普通外科中转手术的比例。
J Surg Res. 2019 Nov;243:391-398. doi: 10.1016/j.jss.2019.05.040. Epub 2019 Jul 2.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验