School of Nano & Materials Science and Engineering, Kyungpook National University, 2559, Gyeongsang-daero, Sangju, Gyeongbuk, South Korea; Research Institute of Environmental Science & Technology, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, South Korea.
School of Nano & Materials Science and Engineering, Kyungpook National University, 2559, Gyeongsang-daero, Sangju, Gyeongbuk, South Korea; Research Institute of Environmental Science & Technology, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, South Korea; Department of Advanced Science and Technology Convergence, Kyungpook National University, 37224, Sangju, Gyeongsangbuk-do, Republic of Korea.
Environ Pollut. 2021 Feb 15;271:116318. doi: 10.1016/j.envpol.2020.116318. Epub 2020 Dec 15.
The most promising technique for directly converting solar energy into clean fuels and environmental remediation by organic dye degradation is photoelectrochemical (PEC) process. We introduced Sn/Ti doped α-FeO@CuO heterojunction photoanode with complete optimization for PEC hydrogen (H) generation and organic dye degradation. Improvement of photocurrent photo and reducing overpotentials under optimized conditions lead to enhancing PEC performances, degradation efficiency of organic compounds, and H generation generation rate. The optimized heterojunction photoanode (5TiFe@CuO-D) showed IPCE exceeding 42% compared with pristine hematite (Fe-800) nanostructures (28%). Additionally, all the optimized photoanodes showed higher PEC stability for 10 h. Time-resolved PL spectra confirm the improved average lifetime for heterojunction photoanodes, supporting the enhanced PEC performance. Optimized 5TiFe@CuO-D material achieved PEC H generation of ∼300 μL h.cm which is two times higher than pristine hematite's activity (150 μL h.cm) and almost 99% degradation efficiency within 120 min of irradiation time. Therefore, a state-of-the-art study has been explored for hematite-based heterojunction photoanodes reflecting the superior PEC performance and hydrogen, methyl orange (MO) dye degradation activities. The improved results were reported because of stable morphology and better crystallinity acquired through systematic investigation of thermal effects and hydrothermal duration, improved electrical properties by Sn/Ti doping into the lattice of α-FeO and optimization of CuO deposition methods. The formation of well-defined heterojunction minimizes the recombination of the charge carrier and leads to effective transportation of excited electrons for the enhanced PEC performance.
将太阳能直接转化为清洁燃料和通过有机染料降解进行环境修复最有前途的技术是光电化学(PEC)过程。我们介绍了具有完全优化的 Sn/Ti 掺杂α-FeO@CuO 异质结光阳极,用于 PEC 析氢(H)和有机染料降解。在优化条件下,光电流和降低过电势的提高导致 PEC 性能、有机化合物降解效率和 H 生成速率的提高。优化后的异质结光阳极(5TiFe@CuO-D)的 IPCE 超过 42%,而原始赤铁矿(Fe-800)纳米结构为 28%。此外,所有优化后的光阳极在 10 小时内显示出更高的 PEC 稳定性。时间分辨光致发光(PL)光谱证实了异质结光阳极的平均寿命提高,支持了增强的 PEC 性能。优化后的 5TiFe@CuO-D 材料实现了 ∼300 μL·h.cm 的 PEC H 生成,是原始赤铁矿活性(150 μL·h.cm)的两倍,在 120 分钟的辐照时间内几乎达到 99%的降解效率。因此,探索了基于赤铁矿的异质结光阳极的最先进研究,反映了卓越的 PEC 性能和氢气、甲基橙(MO)染料降解活性。改进的结果是由于通过系统研究热效应和水热时间获得的稳定形态和更好的结晶度、通过 Sn/Ti 掺杂到α-FeO 晶格中改善的电性能以及优化的 CuO 沉积方法报告的,因为这些方法可以最小化电荷载流子的复合并有效传输激发电子,从而提高 PEC 性能。