School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, PR China.
Department of Pediatric Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, PR China.
Redox Biol. 2021 Feb;39:101811. doi: 10.1016/j.redox.2020.101811. Epub 2020 Dec 19.
Vascular complications of diabetes are a serious challenge in clinical practice, and effective treatments are an unmet clinical need. Acidic fibroblast growth factor (aFGF) has potent anti-oxidative properties and therefore has become a research focus for the treatment of diabetic vascular complications. However, the specific mechanisms by which aFGF regulates these processes remain unclear. The purpose of this study was to investigate whether aFGF alleviates diabetic endothelial dysfunction by suppressing mitochondrial oxidative stress. We found that aFGF markedly decreased mitochondrial superoxide generation in both db/db mice and endothelial cells incubated with high glucose (30 mM) plus palmitic acid (PA, 0.1 mM), and restored diabetes-impaired Wnt/β-catenin signaling. Pretreatment with the Wnt/β-catenin signaling inhibitors IWR-1-endo (IWR) and ICG-001 abolished aFGF-mediated attenuation of mitochondrial superoxide generation and endothelial protection. Furthermore, the effects of aFGF on endothelial protection under diabetic conditions were suppressed by c-Myc knockdown. Mechanistically, c-Myc knockdown triggered mitochondrial superoxide generation, which was related to decreased expression and subsequent impaired mitochondrial localization of hexokinase 2 (HXK2). The role of HXK2 in aFGF-mediated attenuation of mitochondrial superoxide levels and EC protection was further confirmed by si-Hxk2 and a cell-permeable form of hexokinase II VDAC binding domain (HXK2VBD) peptide, which inhibits mitochondrial localization of HXK2. Taken together, these findings suggest that the endothelial protective effect of aFGF under diabetic conditions could be partly attributed to its role in suppressing mitochondrial superoxide generation via HXK2, which is mediated by the Wnt/β-catenin/c-Myc axis.
血管并发症是糖尿病临床实践中的一个严重挑战,而有效的治疗方法是未满足的临床需求。酸性成纤维细胞生长因子(aFGF)具有很强的抗氧化特性,因此成为治疗糖尿病血管并发症的研究焦点。然而,aFGF 调节这些过程的确切机制尚不清楚。本研究旨在探讨 aFGF 是否通过抑制线粒体氧化应激来缓解糖尿病内皮功能障碍。我们发现,aFGF 可显著减少 db/db 小鼠和高糖(30 mM)加棕榈酸(PA,0.1 mM)孵育的内皮细胞中线粒体超氧化物的产生,并恢复糖尿病损害的 Wnt/β-catenin 信号。Wnt/β-catenin 信号抑制剂 IWR-1-endo(IWR)和 ICG-001 的预处理消除了 aFGF 介导的线粒体超氧化物产生和内皮保护的衰减。此外,c-Myc 敲低抑制了 aFGF 在糖尿病条件下对内皮的保护作用。在机制上,c-Myc 敲低触发了线粒体超氧化物的产生,这与己糖激酶 2(HXK2)的表达减少和随后受损的线粒体定位有关。通过 si-Hxk2 和一种可渗透细胞的己糖激酶 II 电压依赖性阴离子通道结合域(HXK2VBD)肽进一步证实了 HXK2 在 aFGF 介导的线粒体超氧化物水平和 EC 保护中的作用,该肽抑制 HXK2 的线粒体定位。总之,这些发现表明,aFGF 在糖尿病条件下的内皮保护作用可能部分归因于其通过 HXK2 抑制线粒体超氧化物产生的作用,这是通过 Wnt/β-catenin/c-Myc 轴介导的。