Division of Regenerative Medicine and Cellular Therapies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
Division of Advanced Materials and Healthcare Technologies, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK.
J Colloid Interface Sci. 2021 Apr;587:150-161. doi: 10.1016/j.jcis.2020.12.025. Epub 2020 Dec 11.
Protein orientation in nanoparticle-protein conjugates plays a crucial role in binding to cell receptors and ultimately, defines their targeting efficiency. Therefore, understanding fundamental aspects of the role of protein orientation upon adsorption on the surface of nanoparticles (NPs) is vital for the development of clinically important protein-based nanomedicines. In this work, new insights on the effect of the different orientation of cytochrome c (cyt c) bound to gold nanoparticles (GNPs) using various ligands on its apoptotic activity is reported. Time-of-Flight Secondary-Ion Mass Spectrometry (ToF-SIMS), electrochemical and circular dichroism (CD) analyses are used to investigate the characteristics of cyt c orientation and structure on functionalized GNPs. These studies indicate that the orientation and position of the heme ring inside the cyt c structure can be altered by changing the surface chemistry on the GNPs. A difference in the apoptosis inducing capability because of different orientation of cyt c bound to the GNPs is observed. These findings indicate that the biological activity of a protein can be modulated on the surface of NPs by varying its adsorption orientation. This study will impact on the rational design of new nanoscale biosensors, bioelectronics, and nanoparticle-protein based drugs.
纳米粒子-蛋白质缀合物中的蛋白质取向在与细胞受体结合中起着至关重要的作用,最终决定了它们的靶向效率。因此,了解蛋白质在吸附到纳米粒子(NPs)表面时取向的基本方面对于开发具有临床重要性的基于蛋白质的纳米药物至关重要。在这项工作中,报告了使用各种配体结合到金纳米粒子(GNPs)上的细胞色素 c(cyt c)的不同取向对其细胞凋亡活性的影响的新见解。飞行时间二次离子质谱(ToF-SIMS)、电化学和圆二色性(CD)分析用于研究功能化 GNPs 上 cyt c 取向和结构的特征。这些研究表明,通过改变 GNPs 表面化学,可以改变 cyt c 结构内部血红素环的取向和位置。观察到由于与 GNPs 结合的 cyt c 的不同取向而导致的诱导凋亡能力的差异。这些发现表明,通过改变其吸附取向,可以在 NPs 表面调节蛋白质的生物活性。这项研究将影响新型纳米生物传感器、生物电子学和基于纳米颗粒-蛋白质的药物的合理设计。