Suppr超能文献

基于割集采样的分层有损双层图像压缩

Hierarchical Lossy Bilevel Image Compression Based on Cutset Sampling.

作者信息

Zha Shengxin, Pappas Thrasyvoulos N, Neuhoff David L

出版信息

IEEE Trans Image Process. 2021;30:1527-1541. doi: 10.1109/TIP.2020.3043587. Epub 2021 Jan 7.

Abstract

We consider lossy compression of a broad class of bilevel images that satisfy the smoothness criterion, namely, images in which the black and white regions are separated by smooth or piecewise smooth boundaries, and especially lossy compression of complex bilevel images in this class. We propose a new hierarchical compression approach that extends the previously proposed fixed-grid lossy cutset coding (LCC) technique by adapting the grid size to local image detail. LCC was claimed to have the best rate-distortion performance of any lossy compression technique in the given image class, but cannot take advantage of detail variations across an image. The key advantages of the hierarchical LCC (HLCC) is that, by adapting to local detail, it provides constant quality controlled by a single parameter (distortion threshold), independent of image content, and better overall visual quality and rate-distortion performance, over a wider range of bitrates. We also introduce several other enhancements of LCC that improve reconstruction accuracy and perceptual quality. These include the use of multiple connection bits that provide structural information by specifying which black (or white) runs on the boundary of a block must be connected, a boundary presmoothing step, stricter connectivity constraints, and more elaborate probability estimation for arithmetic coding. We also propose a progressive variation that refines the image reconstruction as more bits are transmitted, with very small additional overhead. Experimental results with a wide variety of, and especially complex, bilevel images in the given class confirm that the proposed techniques provide substantially better visual quality and rate-distortion performance than existing lossy bilevel compression techniques, at bitrates lower than lossless compression with the JBIG or JBIG2 standards.

摘要

我们考虑对满足平滑度标准的一大类二值图像进行有损压缩,即黑白区域由平滑或分段平滑边界分隔的图像,尤其关注此类复杂二值图像的有损压缩。我们提出了一种新的分层压缩方法,该方法通过使网格大小适应局部图像细节,扩展了先前提出的固定网格有损割集编码(LCC)技术。据称,LCC在给定图像类别中的所有有损压缩技术中具有最佳的率失真性能,但无法利用图像中细节的变化。分层LCC(HLCC)的关键优势在于,通过适应局部细节,它能通过单个参数(失真阈值)提供恒定质量,与图像内容无关,并且在更广泛的比特率范围内具有更好的整体视觉质量和率失真性能。我们还介绍了LCC的其他几种改进方法,这些方法提高了重建精度和感知质量。其中包括使用多个连接位,通过指定块边界上的哪些黑色(或白色)游程必须连接来提供结构信息,一个边界预平滑步骤,更严格的连通性约束,以及用于算术编码的更精细的概率估计。我们还提出了一种渐进变体,随着更多比特的传输来细化图像重建,且额外开销非常小。对给定类别中各种尤其是复杂的二值图像进行的实验结果证实,在比特率低于采用JBIG或JBIG2标准的无损压缩的情况下,所提出的技术比现有的有损二值压缩技术提供了显著更好的视觉质量和率失真性能。

相似文献

1
Hierarchical Lossy Bilevel Image Compression Based on Cutset Sampling.
IEEE Trans Image Process. 2021;30:1527-1541. doi: 10.1109/TIP.2020.3043587. Epub 2021 Jan 7.
2
Lossy cutset coding of bilevel images based on Markov random fields.
IEEE Trans Image Process. 2014 Apr;23(4):1652-65. doi: 10.1109/TIP.2014.2302678.
3
Lossless, near-lossless, and refinement coding of bilevel images.
IEEE Trans Image Process. 1999;8(5):601-13. doi: 10.1109/83.760309.
4
An algorithm for compression of bilevel images.
IEEE Trans Image Process. 2001;10(5):669-76. doi: 10.1109/83.918560.
5
Arbitrarily shaped motion prediction for depth video compression using arithmetic edge coding.
IEEE Trans Image Process. 2014 Nov;23(11):4696-708. doi: 10.1109/TIP.2014.2353817. Epub 2014 Aug 29.
6
An image multiresolution representation for lossless and lossy compression.
IEEE Trans Image Process. 1996;5(9):1303-10. doi: 10.1109/83.535842.
7
Improved JPEG Coding by Filtering 8 × 8 DCT Blocks.
J Imaging. 2021 Jul 15;7(7):117. doi: 10.3390/jimaging7070117.
8
Near-lossless/lossless compression of error-diffused images using a two-pass approach.
IEEE Trans Image Process. 2003;12(2):170-5. doi: 10.1109/TIP.2002.807360.
9
Similarity of Scenic Bilevel Images.
IEEE Trans Image Process. 2016 Nov;25(11):5063-5076. doi: 10.1109/TIP.2016.2598493.
10
Swelling archives warrant closer look at compression.
Radiol Manage. 2003 Sep-Oct;25(5):36-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验