Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544;
Division of International Epidemiology and Population Studies, Fogarty International Center, NIH, Bethesda, MD 20892.
Proc Natl Acad Sci U S A. 2021 Jan 12;118(2). doi: 10.1073/pnas.2011548118.
The reproduction number R and the growth rate r are critical epidemiological quantities. They are linked by generation intervals, the time between infection and onward transmission. Because generation intervals are difficult to observe, epidemiologists often substitute serial intervals, the time between symptom onset in successive links in a transmission chain. Recent studies suggest that such substitution biases estimates of R based on r. Here we explore how these intervals vary over the course of an epidemic, and the implications for R estimation. Forward-looking serial intervals, measuring time forward from symptom onset of an infector, correctly describe the renewal process of symptomatic cases and therefore reliably link R with r. In contrast, backward-looking intervals, which measure time backward, and intrinsic intervals, which neglect population-level dynamics, give incorrect R estimates. Forward-looking intervals are affected both by epidemic dynamics and by censoring, changing in complex ways over the course of an epidemic. We present a heuristic method for addressing biases that arise from neglecting changes in serial intervals. We apply the method to early (21 January to February 8, 2020) serial interval-based estimates of R for the COVID-19 outbreak in China outside Hubei province; using improperly defined serial intervals in this context biases estimates of initial R by up to a factor of 2.6. This study demonstrates the importance of early contact tracing efforts and provides a framework for reassessing generation intervals, serial intervals, and R estimates for COVID-19.
繁殖数 R 和增长率 r 是关键的流行病学参数。它们通过代际间隔(即从感染到传播的时间)联系在一起。由于代际间隔难以观察,流行病学家通常会用序列间隔(即在传播链中连续环节之间出现症状的时间)来替代。最近的研究表明,这种替代会使基于 r 估计的 R 值产生偏差。在这里,我们探讨了这些间隔在疫情期间的变化情况,以及对 R 估计的影响。前瞻性序列间隔从感染者出现症状开始向前测量,正确描述了有症状病例的更新过程,因此可靠地将 R 与 r 联系起来。相比之下,回溯性间隔(测量从传播链中连续环节的症状出现开始的时间)和内在间隔(忽略人群水平的动态)给出了不正确的 R 估计。前瞻性间隔既受到疫情动态的影响,也受到删失的影响,在疫情期间以复杂的方式发生变化。我们提出了一种处理因忽略序列间隔变化而产生偏差的启发式方法。我们将该方法应用于中国湖北省以外地区 COVID-19 疫情早期(2020 年 1 月 21 日至 2 月 8 日)基于序列间隔的 R 估计值;在这种情况下,使用不当定义的序列间隔会使初始 R 的估计值产生高达 2.6 倍的偏差。本研究证明了早期接触追踪工作的重要性,并为重新评估 COVID-19 的代际间隔、序列间隔和 R 估计值提供了框架。