Sanders Glen A, Taranta Austin A, Narayanan Chellappan, Numkam Fokoua Eric, Abokhamis Mousavi Seyedmohammad, Strandjord Lee K, Smiciklas Marc, Bradley Thomas D, Hayes John, Jasion Gregory T, Qiu Tiequn, Williams Wes, Poletti Francesco, Payne David N
Opt Lett. 2021 Jan 1;46(1):46-49. doi: 10.1364/OL.410387.
Resonator fiber optic gyroscope (RFOG) performance has hitherto been limited by nonlinearity, modal impurity, and backscattering in the sensing fibers. The use of hollow-core fiber (HCF) effectively reduces nonlinearity, but the complex interplay among glass and air-guided modes in conventional HCF technologies can severely exacerbate RFOG instability. By employing high-performance nested anti-resonant nodeless fiber, we demonstrate long-term stability in a hollow-fiber RFOG of 0.05 deg/h, nearing the levels required for civil aircraft navigation. This represents a ${{3}} \times$ improvement over any prior hollow-core RFOG and a factor of ${{500}} \times$ over any prior result at integration times longer than 1 h.
迄今为止,谐振式光纤陀螺仪(RFOG)的性能一直受到传感光纤中的非线性、模态杂质和后向散射的限制。空心光纤(HCF)的使用有效地降低了非线性,但传统HCF技术中玻璃模式和空气引导模式之间复杂的相互作用会严重加剧RFOG的不稳定性。通过采用高性能的嵌套抗谐振无节点光纤,我们在空心光纤RFOG中实现了0.05度/小时的长期稳定性,接近民用航空导航所需的水平。这比任何先前的空心光纤RFOG提高了3倍,在积分时间超过1小时的情况下,比任何先前的结果提高了500倍。