Suppr超能文献

利用马尔可夫随机场算法通过图像像素改进激光扫描仪测量

Laser scanner measuring improved by image pixels using a Markov random field algorithm.

作者信息

Qinglong Hu, Wang Zhiwei, Niu Jiayu, Wang Shifeng

出版信息

J Opt Soc Am A Opt Image Sci Vis. 2020 Dec 1;37(12):2014-2019. doi: 10.1364/JOSAA.405317.

Abstract

Laser scanners can be employed for spatial measuring tasks, but measuring accuracy is restricted because of the time of flight working principle. Laser-scanner-based observations with measuring errors might lead to rough spatial reconstruction. In this paper, an image registration method applying a Markov random field (MRF) algorithm is proposed. First, point cloud images are projected to a particular plane in a specific way. Then, the characteristic points of the projected image and the color image are extracted by an improved Harris algorithm. Next, the rotation and translation matrices can be calculated from the two image planes through the registration method. Finally, the MRF model is established describing the relation between the pixels and corresponding point cloud, which improves the resolution of the point cloud image. Furthermore, the color information of the point cloud is also matched. This method improves the efficiency and accuracy of registration. The final experimental result shows that using the MRF model increases measuring accuracy by 15%.

摘要

激光扫描仪可用于空间测量任务,但由于飞行时间工作原理,测量精度受到限制。基于激光扫描仪的带有测量误差的观测可能会导致粗糙的空间重建。本文提出了一种应用马尔可夫随机场(MRF)算法的图像配准方法。首先,以特定方式将点云图像投影到特定平面。然后,通过改进的哈里斯算法提取投影图像和彩色图像的特征点。接下来,通过配准方法从两个图像平面计算旋转和平移矩阵。最后,建立描述像素与相应点云之间关系的MRF模型,提高了点云图像的分辨率。此外,还对点云的颜色信息进行了匹配。该方法提高了配准的效率和准确性。最终实验结果表明,使用MRF模型可将测量精度提高15%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验