Suppr超能文献

融合多视图超声数据以提高无损检测中的检测性能。

Fusion of multi-view ultrasonic data for increased detection performance in non-destructive evaluation.

作者信息

Wilcox Paul D, Croxford Anthony J, Budyn Nicolas, Bevan Rhodri L T, Zhang Jie, Kashubin Artem, Cawley Peter

机构信息

Department of Mechanical Engineering, University of Bristol, Queen's Building, University Walk, Bristol BS8 1TR, UK.

Department of Mechanical Engineering, Imperial College, Exhibition Road, London SW7 2AZ, UK.

出版信息

Proc Math Phys Eng Sci. 2020 Nov;476(2243):20200086. doi: 10.1098/rspa.2020.0086. Epub 2020 Nov 18.

Abstract

State-of-the-art ultrasonic non-destructive evaluation (NDE) uses an array to rapidly generate multiple, information-rich views at each test position on a safety-critical component. However, the information for detecting potential defects is dispersed across views, and a typical inspection may involve thousands of test positions. Interpretation requires painstaking analysis by a skilled operator. In this paper, various methods for fusing multi-view data are developed. Compared with any one single view, all methods are shown to yield significant performance gains, which may be related to the general and edge cases for NDE. In the general case, a defect is clearly detectable in at least one individual view, but the view(s) depends on the defect location and orientation. Here, the performance gain from data fusion is mainly the result of the selective use of information from the most appropriate view(s) and fusion provides a means to substantially reduce operator burden. The edge cases are defects that cannot be reliably detected in any one individual view without false alarms. Here, certain fusion methods are shown to enable detection with reduced false alarms. In this context, fusion allows NDE capability to be extended with potential implications for the design and operation of engineering assets.

摘要

先进的超声无损检测(NDE)使用阵列在安全关键部件的每个测试位置快速生成多个信息丰富的视图。然而,用于检测潜在缺陷的信息分散在各个视图中,并且典型的检查可能涉及数千个测试位置。解释需要熟练的操作员进行细致的分析。在本文中,开发了多种融合多视图数据的方法。与任何单个视图相比,所有方法都显示出显著的性能提升,这可能与无损检测的一般情况和边缘情况有关。在一般情况下,至少在一个单独的视图中可以清楚地检测到缺陷,但具体取决于缺陷的位置和方向。在这里,数据融合带来的性能提升主要是选择性地使用最合适视图中的信息的结果,并且融合提供了一种大幅减轻操作员负担的方法。边缘情况是指在任何单个视图中都无法可靠检测而不产生误报的缺陷。在这里,某些融合方法显示能够在减少误报的情况下进行检测。在这种情况下,融合使无损检测能力得以扩展,对工程资产的设计和运行可能产生潜在影响。

相似文献

2
Data fusion for automated non-destructive inspection.用于自动无损检测的数据融合。
Proc Math Phys Eng Sci. 2014 Jul 8;470(2167):20140167. doi: 10.1098/rspa.2014.0167.
6
Sparse signal representation and its applications in ultrasonic NDE.稀疏信号表示及其在超声无损检测中的应用。
Ultrasonics. 2012 Mar;52(3):351-63. doi: 10.1016/j.ultras.2011.10.001. Epub 2011 Oct 10.
7
Data Fusion of Multiview Ultrasonic Imaging for Characterization of Large Defects.用于大缺陷表征的多视图超声成像数据融合
IEEE Trans Ultrason Ferroelectr Freq Control. 2020 Nov;67(11):2387-2401. doi: 10.1109/TUFFC.2020.3004982. Epub 2020 Jun 25.

本文引用的文献

2
Experimental Quantification of Noise in Linear Ultrasonic Imaging.线性超声成象中的噪声的实验定量。
IEEE Trans Ultrason Ferroelectr Freq Control. 2019 Jan;66(1):79-90. doi: 10.1109/TUFFC.2018.2874720. Epub 2018 Oct 16.
6
Data fusion for automated non-destructive inspection.用于自动无损检测的数据融合。
Proc Math Phys Eng Sci. 2014 Jul 8;470(2167):20140167. doi: 10.1098/rspa.2014.0167.
7
The wavenumber algorithm for full-matrix imaging using an ultrasonic array.使用超声阵列进行全矩阵成像的波数算法。
IEEE Trans Ultrason Ferroelectr Freq Control. 2008 Nov;55(11):2450-62. doi: 10.1109/TUFFC.952.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验