Suppr超能文献

极高雷诺数下湍流中的极端耗散与间歇性

Extreme dissipation and intermittency in turbulence at very high Reynolds numbers.

作者信息

Elsinga Gerrit E, Ishihara Takashi, Hunt Julian C R

机构信息

Laboratory for Aero and Hydrodynamics, Department of Mechanical, Maritime and Materials Engineering, Delft University of Technology, 2628 CD Delft, the Netherlands.

Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan.

出版信息

Proc Math Phys Eng Sci. 2020 Nov;476(2243):20200591. doi: 10.1098/rspa.2020.0591. Epub 2020 Nov 4.

Abstract

Extreme dissipation events in turbulent flows are rare, but they can be orders of magnitude stronger than the mean dissipation rate. Despite its importance in many small-scale physical processes, there is presently no accurate theory or model for predicting the extrema as a function of the Reynolds number. Here, we introduce a new model for the dissipation probability density function (PDF) based on the concept of significant shear layers, which are thin regions of elevated local mean dissipation. At very high Reynolds numbers, these significant shear layers develop layered substructures. The flow domain is divided into the different layer regions and a background region, each with their own PDF of dissipation. The volume-weighted regional PDFs are combined to obtain the overall PDF, which is subsequently used to determine the dissipation variance and maximum. The model yields Reynolds number scalings for the dissipation maximum and variance, which are in agreement with the available data. Moreover, the power law scaling exponent is found to increase gradually with the Reynolds numbers, which is also consistent with the data. The increasing exponent is shown to have profound implications for turbulence at atmospheric and astrophysical Reynolds numbers. The present results strongly suggest that intermittent significant shear layer structures are key to understanding and quantifying the dissipation extremes, and, more generally, extreme velocity gradients.

摘要

湍流中的极端耗散事件很少见,但它们可能比平均耗散率强几个数量级。尽管其在许多小尺度物理过程中很重要,但目前尚无准确的理论或模型来预测作为雷诺数函数的极值。在此,我们基于显著剪切层的概念引入了一种新的耗散概率密度函数(PDF)模型,显著剪切层是局部平均耗散升高的薄区域。在非常高的雷诺数下,这些显著剪切层会发展出分层子结构。流动区域被划分为不同的层区域和一个背景区域,每个区域都有自己的耗散PDF。对体积加权的区域PDF进行组合以获得整体PDF,随后用其来确定耗散方差和最大值。该模型得出了耗散最大值和方差的雷诺数标度,与现有数据一致。此外,发现幂律标度指数随雷诺数逐渐增加,这也与数据一致。增加的指数对大气和天体物理雷诺数下的湍流具有深远影响。目前的结果强烈表明,间歇性的显著剪切层结构是理解和量化极端耗散以及更一般地极端速度梯度的关键。

相似文献

1
Extreme dissipation and intermittency in turbulence at very high Reynolds numbers.
Proc Math Phys Eng Sci. 2020 Nov;476(2243):20200591. doi: 10.1098/rspa.2020.0591. Epub 2020 Nov 4.
2
Transition of fluctuations from Gaussian state to turbulent state.
Philos Trans A Math Phys Eng Sci. 2022 Mar 7;380(2218):20210097. doi: 10.1098/rsta.2021.0097. Epub 2022 Jan 17.
4
Application of superstatistical analysis on fluctuant surface shear in particle-laden turbulence boundary layer.
Eur Phys J E Soft Matter. 2022 Jan 24;45(1):5. doi: 10.1140/epje/s10189-021-00159-x.
5
Non-equilibrium turbulence scalings and self-similarity in turbulent planar jets.
Proc Math Phys Eng Sci. 2019 May;475(2225):20190038. doi: 10.1098/rspa.2019.0038. Epub 2019 May 8.
6
Small-scale universality in fluid turbulence.
Proc Natl Acad Sci U S A. 2014 Jul 29;111(30):10961-5. doi: 10.1073/pnas.1410791111. Epub 2014 Jul 14.
7
Model for intermittency of energy dissipation in turbulent flows.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Aug;74(2 Pt 2):026306. doi: 10.1103/PhysRevE.74.026306. Epub 2006 Aug 25.
8
Dissipation-range fluid turbulence and thermal noise.
Phys Rev E. 2022 Jun;105(6-2):065113. doi: 10.1103/PhysRevE.105.065113.
9
Local structure of turbulence in flows with large Reynolds numbers.
Chaos. 1991 Aug;1(2):237-241. doi: 10.1063/1.165835.
10
Forecasting small-scale dynamics of fluid turbulence using deep neural networks.
Proc Natl Acad Sci U S A. 2023 Jul 25;120(30):e2305765120. doi: 10.1073/pnas.2305765120. Epub 2023 Jul 19.

引用本文的文献

1
Disentangling temperature and Reynolds number effects in quantum turbulence.
Proc Natl Acad Sci U S A. 2025 Jul 8;122(27):e2426598122. doi: 10.1073/pnas.2426598122. Epub 2025 Jul 3.
2
Memoryless drop breakup in turbulence.
Sci Adv. 2022 Dec 16;8(50):eabp9561. doi: 10.1126/sciadv.abp9561.
3
Vortex clustering, polarisation and circulation intermittency in classical and quantum turbulence.
Nat Commun. 2021 Dec 7;12(1):7090. doi: 10.1038/s41467-021-27382-6.

本文引用的文献

1
Interfaces and inhomogeneous turbulence.
Philos Trans A Math Phys Eng Sci. 2011 Feb 28;369(1937):811-32. doi: 10.1098/rsta.2010.0325.
2
Singularities of the equations of fluid motion.
Phys Rev A Gen Phys. 1988 Dec 15;38(12):6287-6295. doi: 10.1103/physreva.38.6287.
3
Degrees of freedom of turbulence.
Phys Rev A Gen Phys. 1987 Feb 15;35(4):1971-1973. doi: 10.1103/physreva.35.1971.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验