Suppr超能文献

使用深度神经网络预测流体湍流的小尺度动力学。

Forecasting small-scale dynamics of fluid turbulence using deep neural networks.

作者信息

Buaria Dhawal, Sreenivasan Katepalli R

机构信息

Tandon School of Engineering, New York University, New York, NY 11201.

Laboratory for Fluid Physics, Pattern Formation and Biocomplexity, Max Planck Institute for Dynamics and Self-Organization, Göttingen 37077, Germany.

出版信息

Proc Natl Acad Sci U S A. 2023 Jul 25;120(30):e2305765120. doi: 10.1073/pnas.2305765120. Epub 2023 Jul 19.

Abstract

Turbulence in fluid flows is characterized by a wide range of interacting scales. Since the scale range increases as some power of the flow Reynolds number, a faithful simulation of the entire scale range is prohibitively expensive at high Reynolds numbers. The most expensive aspect concerns the small-scale motions; thus, major emphasis is placed on understanding and modeling them, taking advantage of their putative universality. In this work, using physics-informed deep learning methods, we present a modeling framework to capture and predict the small-scale dynamics of turbulence, via the velocity gradient tensor. The model is based on obtaining functional closures for the pressure Hessian and viscous Laplacian contributions as functions of velocity gradient tensor. This task is accomplished using deep neural networks that are consistent with physical constraints and explicitly incorporate Reynolds number dependence to account for small-scale intermittency. We then utilize a massive direct numerical simulation database, spanning two orders of magnitude in the large-scale Reynolds number, for training and validation. The model learns from low to moderate Reynolds numbers and successfully predicts velocity gradient statistics at both seen and higher (unseen) Reynolds numbers. The success of our present approach demonstrates the viability of deep learning over traditional modeling approaches in capturing and predicting small-scale features of turbulence.

摘要

流体流动中的湍流具有一系列相互作用的尺度特征。由于尺度范围随流动雷诺数的某个幂次增加,在高雷诺数下对整个尺度范围进行精确模拟成本过高。最昂贵的部分涉及小尺度运动;因此,主要重点在于理解和模拟这些小尺度运动,并利用它们假定的普遍性。在这项工作中,我们使用基于物理知识的深度学习方法,提出了一个建模框架,通过速度梯度张量来捕捉和预测湍流的小尺度动力学。该模型基于获得压力海森矩阵和粘性拉普拉斯算子贡献的函数闭包,将其作为速度梯度张量的函数。这项任务通过与物理约束一致且明确纳入雷诺数依赖性以考虑小尺度间歇性的深度神经网络来完成。然后,我们利用一个大规模直接数值模拟数据库进行训练和验证,该数据库的大尺度雷诺数跨越两个数量级。该模型从低到中等雷诺数进行学习,并成功预测了已见和更高(未见)雷诺数下的速度梯度统计量。我们目前方法的成功证明了深度学习在捕捉和预测湍流小尺度特征方面相对于传统建模方法的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f12d/10372621/85bbbad89e12/pnas.2305765120fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验