Rettenmaier Clara, Arán-Ais Rosa M, Timoshenko Janis, Rizo Rubén, Jeon Hyo Sang, Kühl Stefanie, Chee See Wee, Bergmann Arno, Roldan Cuenya Beatriz
Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society, Faradayweg 4-6, 14195 Berlin, Germany.
ACS Catal. 2020 Dec 18;10(24):14540-14551. doi: 10.1021/acscatal.0c03212. Epub 2020 Nov 25.
The formic acid oxidation reaction (FAOR) is one of the key reactions that can be used at the anode of low-temperature liquid fuel cells. To allow the knowledge-driven development of improved catalysts, it is necessary to deeply understand the fundamental aspects of the FAOR, which can be ideally achieved by investigating highly active model catalysts. Here, we studied SnO-decorated Pd nanocubes (NCs) exhibiting excellent electrocatalytic performance for formic acid oxidation in acidic medium with a SnO promotion that boosts the catalytic activity by a factor of 5.8, compared to pure Pd NCs, exhibiting values of 2.46 A mg for SnO@Pd NCs versus 0.42 A mg for the Pd NCs and a 100 mV lower peak potential. By using ex situ, quasi in situ, and operando spectroscopic and microscopic methods (namely, transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray absorption fine-structure spectroscopy), we identified that the initially well-defined SnO-decorated Pd nanocubes maintain their structure and composition throughout FAOR. In situ Fourier-transformed infrared spectroscopy revealed a weaker CO adsorption site in the case of the SnO-decorated Pd NCs, compared to the monometallic Pd NCs, enabling a bifunctional reaction mechanism. Therein, SnO provides oxygen species to the Pd surface at low overpotentials, promoting the oxidation of the poisoning CO intermediate and, thus, improving the catalytic performance of Pd. Our SnO -decorated Pd nanocubes allowed deeper insight into the mechanism of FAOR and hold promise for possible applications in direct formic acid fuel cells.
甲酸氧化反应(FAOR)是可用于低温液体燃料电池阳极的关键反应之一。为了实现基于知识驱动的改进型催化剂的开发,有必要深入了解FAOR的基本方面,而这可以通过研究高活性模型催化剂来理想地实现。在此,我们研究了SnO修饰的钯纳米立方体(NCs),其在酸性介质中对甲酸氧化表现出优异的电催化性能,SnO的促进作用使催化活性比纯钯NCs提高了5.8倍,SnO@Pd NCs的电流密度为2.46 A mg⁻¹,而钯NCs为0.42 A mg⁻¹,且峰值电位低100 mV。通过使用非原位、准原位和原位光谱及显微镜方法(即透射电子显微镜、X射线光电子能谱和X射线吸收精细结构光谱),我们确定最初定义明确的SnO修饰的钯纳米立方体在整个FAOR过程中保持其结构和组成。原位傅里叶变换红外光谱显示,与单金属钯NCs相比,SnO修饰的钯NCs的CO吸附位点较弱,这使得能够形成双功能反应机制。其中,SnO在低过电位下向钯表面提供氧物种,促进中毒的CO中间体的氧化,从而提高钯的催化性能。我们的SnO修饰的钯纳米立方体有助于更深入地了解FAOR的机制,并有望在直接甲酸燃料电池中得到应用。