Suppr超能文献

解析生物分子冠与细胞受体的相互作用及其对纳米药物靶向性的影响

Disentangling Biomolecular Corona Interactions With Cell Receptors and Implications for Targeting of Nanomedicines.

作者信息

Aliyandi Aldy, Zuhorn Inge S, Salvati Anna

机构信息

Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands.

Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.

出版信息

Front Bioeng Biotechnol. 2020 Dec 10;8:599454. doi: 10.3389/fbioe.2020.599454. eCollection 2020.

Abstract

Nanoparticles are promising tools for nanomedicine in a wide array of therapeutic and diagnostic applications. Yet, despite the advances in the biomedical applications of nanomaterials, relatively few nanomedicines made it to the clinics. The formation of the biomolecular corona on the surface of nanoparticles has been known as one of the challenges toward successful targeting of nanomedicines. This adsorbed protein layer can mask targeting moieties and creates a new biological identity that critically affects the subsequent biological interactions of nanomedicines with cells. Extensive studies have been directed toward understanding the characteristics of this layer of biomolecules and its implications for nanomedicine outcomes at cell and organism levels, yet several aspects are still poorly understood. One aspect that still requires further insights is how the biomolecular corona interacts with and is "read" by the cellular machinery. Within this context, this review is focused on the current understanding of the interactions of the biomolecular corona with cell receptors. First, we address the importance and the role of receptors in the uptake of nanoparticles. Second, we discuss the recent advances and techniques in characterizing and identifying biomolecular corona-receptor interactions. Additionally, we present how we can exploit the knowledge of corona-cell receptor interactions to discover novel receptors for targeting of nanocarriers. Finally, we conclude this review with an outlook on possible future perspectives in the field. A better understanding of the first interactions of nanomaterials with cells, and -in particular -the receptors interacting with the biomolecular corona and involved in nanoparticle uptake, will help for the successful design of nanomedicines for targeted delivery.

摘要

纳米颗粒是纳米医学中用于广泛治疗和诊断应用的有前景的工具。然而,尽管纳米材料在生物医学应用方面取得了进展,但进入临床的纳米药物相对较少。纳米颗粒表面生物分子冠层的形成被认为是纳米药物成功靶向的挑战之一。这种吸附的蛋白质层可以掩盖靶向部分,并创造一种新的生物学特性,这对纳米药物随后与细胞的生物相互作用产生关键影响。广泛的研究致力于了解这层生物分子的特性及其在细胞和生物体水平对纳米医学结果的影响,但仍有几个方面了解甚少。一个仍需要进一步深入研究的方面是生物分子冠层如何与细胞机制相互作用并被其“读取”。在此背景下,本综述聚焦于目前对生物分子冠层与细胞受体相互作用的理解。首先,我们阐述受体在纳米颗粒摄取中的重要性和作用。其次,我们讨论表征和识别生物分子冠层 - 受体相互作用的最新进展和技术。此外,我们介绍如何利用冠层 - 细胞受体相互作用的知识来发现用于靶向纳米载体的新型受体。最后,我们以该领域可能的未来展望结束本综述。更好地理解纳米材料与细胞的首次相互作用,特别是与生物分子冠层相互作用并参与纳米颗粒摄取的受体,将有助于成功设计用于靶向递送的纳米药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f80/7758247/442ebd743def/fbioe-08-599454-g001.jpg

相似文献

1
Disentangling Biomolecular Corona Interactions With Cell Receptors and Implications for Targeting of Nanomedicines.
Front Bioeng Biotechnol. 2020 Dec 10;8:599454. doi: 10.3389/fbioe.2020.599454. eCollection 2020.
2
The Crown and the Scepter: Roles of the Protein Corona in Nanomedicine.
Adv Mater. 2019 Nov;31(45):e1805740. doi: 10.1002/adma.201805740. Epub 2018 Dec 27.
3
The biomolecular corona of nanomedicines: effects on nanomedicine outcomes and emerging opportunities.
Curr Opin Biotechnol. 2024 Jun;87:103101. doi: 10.1016/j.copbio.2024.103101. Epub 2024 Mar 10.
4
Bypassing Protein Corona Issue on Active Targeting: Zwitterionic Coatings Dictate Specific Interactions of Targeting Moieties and Cell Receptors.
ACS Appl Mater Interfaces. 2016 Sep 7;8(35):22808-18. doi: 10.1021/acsami.6b05099. Epub 2016 Aug 25.
5
Protein corona: challenges and opportunities for targeted delivery of nanomedicines.
Expert Opin Drug Deliv. 2022 Jul;19(7):833-846. doi: 10.1080/17425247.2022.2093854. Epub 2022 Jun 27.
6
Manipulation of protein corona for nanomedicines.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2024 Jul-Aug;16(4):e1982. doi: 10.1002/wnan.1982.
7
The Biomolecular Corona of Lipid Nanoparticles for Gene Therapy.
Bioconjug Chem. 2020 Sep 16;31(9):2046-2059. doi: 10.1021/acs.bioconjchem.0c00366. Epub 2020 Aug 31.
8
Mechanistic Understanding of Protein Corona Formation around Nanoparticles: Old Puzzles and New Insights.
Small. 2023 Jul;19(28):e2301663. doi: 10.1002/smll.202301663. Epub 2023 Apr 3.
9
Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine.
Beilstein J Nanotechnol. 2020 Feb 14;11:338-353. doi: 10.3762/bjnano.11.25. eCollection 2020.
10
Advancing Analysis of Biomolecular Corona: Opportunities and Challenges in Utilizing Field-Flow Fractionation.
ACS Bio Med Chem Au. 2024 Mar 21;4(2):77-85. doi: 10.1021/acsbiomedchemau.4c00001. eCollection 2024 Apr 17.

引用本文的文献

1
Breaking free: endocytosis and endosomal escape of extracellular vesicles.
Extracell Vesicles Circ Nucl Acids. 2023 Jun 30;4(2):283-305. doi: 10.20517/evcna.2023.26. eCollection 2023.
2
Systemically targeting monocytic myeloid-derived suppressor cells using dendrimers and their cell-level biodistribution kinetics.
J Control Release. 2024 Oct;374:181-193. doi: 10.1016/j.jconrel.2024.08.003. Epub 2024 Aug 15.
4
Cellular Uptake Mechanism of Nucleic Acid Nanocapsules and Their DNA-Surfactant Building Blocks.
Bioconjug Chem. 2023 Jun 21;34(6):1004-1013. doi: 10.1021/acs.bioconjchem.3c00104. Epub 2023 May 25.
5
Single-Particle Functionality Imaging of Antibody-Conjugated Nanoparticles in Complex Media.
ACS Appl Bio Mater. 2023 Jan 16;6(1):171-181. doi: 10.1021/acsabm.2c00830. Epub 2023 Jan 3.
6
Magneto-mechanical treatment of human glioblastoma cells with engineered iron oxide powder microparticles for triggering apoptosis.
Nanoscale Adv. 2021 Sep 28;3(21):6213-6222. doi: 10.1039/d1na00461a. eCollection 2021 Oct 27.
7
Identifying cell receptors for the nanoparticle protein corona using genome screens.
Nat Chem Biol. 2022 Sep;18(9):1023-1031. doi: 10.1038/s41589-022-01093-5. Epub 2022 Aug 11.
8
Influence of Critical Parameters on Cytotoxicity Induced by Mesoporous Silica Nanoparticles.
Nanomaterials (Basel). 2022 Jun 11;12(12):2016. doi: 10.3390/nano12122016.
9
Drug Targeting and Nanomedicine: Lessons Learned from Liver Targeting and Opportunities for Drug Innovation.
Pharmaceutics. 2022 Jan 17;14(1):217. doi: 10.3390/pharmaceutics14010217.

本文引用的文献

2
The Biomolecular Corona of Lipid Nanoparticles for Gene Therapy.
Bioconjug Chem. 2020 Sep 16;31(9):2046-2059. doi: 10.1021/acs.bioconjchem.0c00366. Epub 2020 Aug 31.
3
Identification of Cell-Surface Proteins Endocytosed by Human Brain Microvascular Endothelial Cells In Vitro.
Pharmaceutics. 2020 Jun 23;12(6):579. doi: 10.3390/pharmaceutics12060579.
4
Unbiased Identification of the Liposome Protein Corona using Photoaffinity-based Chemoproteomics.
ACS Cent Sci. 2020 Apr 22;6(4):535-545. doi: 10.1021/acscentsci.9b01222. Epub 2020 Apr 1.
5
Polymeric Nanoparticles with Neglectable Protein Corona.
Small. 2020 May;16(18):e1907574. doi: 10.1002/smll.201907574. Epub 2020 Apr 6.
6
Influence of nanomedicine mechanical properties on tumor targeting delivery.
Chem Soc Rev. 2020 Apr 27;49(8):2273-2290. doi: 10.1039/c9cs00575g.
7
Tuning liposome composition to modulate corona formation in human serum and cellular uptake.
Acta Biomater. 2020 Apr 1;106:314-327. doi: 10.1016/j.actbio.2020.02.018. Epub 2020 Feb 17.
8
The entry of nanoparticles into solid tumours.
Nat Mater. 2020 May;19(5):566-575. doi: 10.1038/s41563-019-0566-2. Epub 2020 Jan 13.
9
The interaction between nanoparticles-protein corona complex and cells and its toxic effect on cells.
Chemosphere. 2020 Apr;245:125624. doi: 10.1016/j.chemosphere.2019.125624. Epub 2019 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验