Nelson Soren, Scullion Evan, Menon Rajesh
Department of Electrical & Computer Engineering, University of Utah, Salt Lake City, UT 84112, USA.
OSA Contin. 2020 Sep 15;3(9):2423-2428. doi: 10.1364/osac.403295.
We demonstrate optics-free imaging of complex color and monochrome QR-codes using a bare image sensor and trained artificial neural networks (ANNs). The ANN is trained to interpret the raw sensor data for human visualization. The image sensor is placed at a specified gap (1mm, 5mm and 10mm) from the QR code. We studied the robustness of our approach by experimentally testing the output of the ANNs with system perturbations of this gap, and the translational and rotational alignments of the QR code to the image sensor. Our demonstration opens us the possibility of using completely optics-free, non-anthropocentric cameras for application-specific imaging of complex, non-sparse objects.
我们展示了使用裸图像传感器和经过训练的人工神经网络(ANN)对复杂彩色和单色二维码进行无光学成像。该人工神经网络经过训练,可解释原始传感器数据以用于人类可视化。图像传感器放置在距二维码指定的间隙(1毫米、5毫米和10毫米)处。我们通过实验测试人工神经网络在该间隙的系统扰动以及二维码与图像传感器的平移和旋转对齐情况下的输出,研究了我们方法的稳健性。我们的演示为使用完全无光学、非人类中心的相机对复杂、非稀疏物体进行特定应用成像开辟了可能性。