Suppr超能文献

基于人工神经网络的三维计算导管荧光显微镜。

3D computational cannula fluorescence microscopy enabled by artificial neural networks.

出版信息

Opt Express. 2020 Oct 26;28(22):32342-32348. doi: 10.1364/OE.403238.

Abstract

Computational cannula microscopy (CCM) is a high-resolution widefield fluorescence imaging approach deep inside tissue, which is minimally invasive. Rather than using conventional lenses, a surgical cannula acts as a lightpipe for both excitation and fluorescence emission, where computational methods are used for image visualization. Here, we enhance CCM with artificial neural networks to enable 3D imaging of cultured neurons and fluorescent beads, the latter inside a volumetric phantom. We experimentally demonstrate transverse resolution of ∼6µm, field of view ∼200µm and axial sectioning of ∼50µm for depths down to ∼700µm, all achieved with computation time of ∼3ms/frame on a desktop computer.

摘要

计算式管显微镜(CCM)是一种高分辨率宽场荧光成像方法,可深入组织内部,且具有微创性。它不使用传统的透镜,而是将手术套管用作激发和荧光发射的光管,其中使用计算方法进行图像可视化。在这里,我们使用人工神经网络增强 CCM,以实现培养神经元和荧光珠的 3D 成像,后者位于体积式体模内部。我们通过实验证明,对于深度达约 700µm 的情况,横向分辨率约为 6µm,视野约为 200µm,轴向切片约为 50µm,所有这些都可以在台式计算机上以约 3ms/帧的计算时间实现。

相似文献

1
3D computational cannula fluorescence microscopy enabled by artificial neural networks.
Opt Express. 2020 Oct 26;28(22):32342-32348. doi: 10.1364/OE.403238.
2
Computational cannula microscopy of neurons using neural networks.
Opt Lett. 2020 Apr 1;45(7):2111-2114. doi: 10.1364/OL.387496.
3
Deep-brain imaging via epi-fluorescence Computational Cannula Microscopy.
Sci Rep. 2017 Mar 20;7:44791. doi: 10.1038/srep44791.
4
5
Extended depth of field microscopy for rapid volumetric two-photon imaging.
Opt Express. 2013 Apr 22;21(8):10095-104. doi: 10.1364/OE.21.010095.
6
Scanning holographic microscopy of three-dimensional fluorescent specimens.
J Opt Soc Am A Opt Image Sci Vis. 2006 Jul;23(7):1699-707. doi: 10.1364/josaa.23.001699.
7
3D beam reconstruction by fluorescence imaging.
Opt Express. 2013 Sep 23;21(19):22215-20. doi: 10.1364/OE.21.022215.
9
Widefield fluorescence microscopy with extended resolution.
Histochem Cell Biol. 2008 Nov;130(5):807-17. doi: 10.1007/s00418-008-0506-8. Epub 2008 Sep 23.
10
Dynamic three-dimensional tracking of single fluorescent nanoparticles deep inside living tissue.
Opt Express. 2012 Aug 27;20(18):19697-707. doi: 10.1364/OE.20.019697.

引用本文的文献

本文引用的文献

1
Optics-free imaging of complex, non-sparse and color QR-codes with deep neural networks.
OSA Contin. 2020 Sep 15;3(9):2423-2428. doi: 10.1364/osac.403295.
2
Single-shot 3D wide-field fluorescence imaging with a Computational Miniature Mesoscope.
Sci Adv. 2020 Oct 21;6(43). doi: 10.1126/sciadv.abb7508. Print 2020 Oct.
3
Fast widefield imaging of neuronal structure and function with optical sectioning in vivo.
Sci Adv. 2020 May 8;6(19):eaaz3870. doi: 10.1126/sciadv.aaz3870. eCollection 2020 May.
4
Computational cannula microscopy of neurons using neural networks.
Opt Lett. 2020 Apr 1;45(7):2111-2114. doi: 10.1364/OL.387496.
5
Rapid mesoscale volumetric imaging of neural activity with synaptic resolution.
Nat Methods. 2020 Mar;17(3):291-294. doi: 10.1038/s41592-020-0760-9. Epub 2020 Mar 2.
6
Real-time volumetric microscopy of in vivo dynamics and large-scale samples with SCAPE 2.0.
Nat Methods. 2019 Oct;16(10):1054-1062. doi: 10.1038/s41592-019-0579-4. Epub 2019 Sep 27.
7
High-resolution limited-angle phase tomography of dense layered objects using deep neural networks.
Proc Natl Acad Sci U S A. 2019 Oct 1;116(40):19848-19856. doi: 10.1073/pnas.1821378116. Epub 2019 Sep 16.
10
Lensless photography with only an image sensor.
Appl Opt. 2017 Aug 10;56(23):6450-6456. doi: 10.1364/AO.56.006450.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验