Opt Express. 2020 Oct 26;28(22):32342-32348. doi: 10.1364/OE.403238.
Computational cannula microscopy (CCM) is a high-resolution widefield fluorescence imaging approach deep inside tissue, which is minimally invasive. Rather than using conventional lenses, a surgical cannula acts as a lightpipe for both excitation and fluorescence emission, where computational methods are used for image visualization. Here, we enhance CCM with artificial neural networks to enable 3D imaging of cultured neurons and fluorescent beads, the latter inside a volumetric phantom. We experimentally demonstrate transverse resolution of ∼6µm, field of view ∼200µm and axial sectioning of ∼50µm for depths down to ∼700µm, all achieved with computation time of ∼3ms/frame on a desktop computer.
计算式管显微镜(CCM)是一种高分辨率宽场荧光成像方法,可深入组织内部,且具有微创性。它不使用传统的透镜,而是将手术套管用作激发和荧光发射的光管,其中使用计算方法进行图像可视化。在这里,我们使用人工神经网络增强 CCM,以实现培养神经元和荧光珠的 3D 成像,后者位于体积式体模内部。我们通过实验证明,对于深度达约 700µm 的情况,横向分辨率约为 6µm,视野约为 200µm,轴向切片约为 50µm,所有这些都可以在台式计算机上以约 3ms/帧的计算时间实现。