Suppr超能文献

两种藏药植物紫堇属植物(罂粟科)的完整叶绿体基因组序列。 (注:原文中“vig. and vig.”表述有误,可能是不完整信息,但按照要求完整翻译此句如上)

Complete chloroplast genome sequences of two species used for Tibetan medicines, vig. and vig. (Papaveraceae).

作者信息

Zhu Yixuan, Zhang Dequan

机构信息

College of Pharmacy and Chemistry, Dali University, Dali, China.

Institute of Materia Medica, Dali University, Dali, China.

出版信息

Mitochondrial DNA B Resour. 2019 Dec 11;5(1):48-50. doi: 10.1080/23802359.2019.1693918.

Abstract

Vig. is a genus possessing important medicinal and ornamental values in the Papaveraceae. Many species in this genus are commonly used in traditional Tibetan medicines over thousands of years. In this study, we sequenced complete chloroplast (cp) genome sequences of two species, namely and to investigate their phylogenetic relationships in Papaveraceae. Total lengths of the chloroplast genomes were 153,281 bp and 153,388 bp, respectively. Both of the two genomes had typical quadripartite structure, LSC region (83,999 bp and 83,698 bp) and SSC region (17,730 bp and 17,822 bp) were separated by a pair of IRs (25,776 bp and 26,107 bp), respectively. Moreover, they were composed of 112 genes, including 78 protein coding genes, 30 tRNA genes, three rRNA genes and one pseudogene. Phylogenetic analysis based on complete chloroplast genomes showed that had closer relationship with than ; meanwhile, was closely related to in Papaveraceae.

摘要

紫堇属是罂粟科中具有重要药用和观赏价值的一个属。该属的许多物种在数千年的传统藏药中被广泛使用。在本研究中,我们对紫堇属的两个物种的完整叶绿体(cp)基因组序列进行了测序,即[物种名1]和[物种名2],以研究它们在罂粟科中的系统发育关系。叶绿体基因组的总长度分别为153,281 bp和153,388 bp。这两个基因组都具有典型的四分体结构,LSC区域(83,999 bp和83,698 bp)和SSC区域(17,730 bp和17,822 bp)分别被一对IRs(25,776 bp和26,107 bp)隔开。此外,它们由112个基因组成,包括78个蛋白质编码基因、30个tRNA基因、3个rRNA基因和1个假基因。基于完整叶绿体基因组的系统发育分析表明,[物种名1]与[物种名3]的关系比与[物种名4]的关系更近;同时,[物种名2]在罂粟科中与[物种名5]关系密切。 (注:原文中部分物种名缺失,翻译时用[物种名X]表示)

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/987c/7721039/cdb7a9d703e8/TMDN_A_1693918_F0001_B.jpg

相似文献

1
Complete chloroplast genome sequences of two species used for Tibetan medicines, vig. and vig. (Papaveraceae).
Mitochondrial DNA B Resour. 2019 Dec 11;5(1):48-50. doi: 10.1080/23802359.2019.1693918.
2
The complete chloroplast genome sequence of .
Mitochondrial DNA B Resour. 2020 Oct 21;5(3):3595-3596. doi: 10.1080/23802359.2020.1829135.
3
Complete chloroplast genome of (Papaveraceae).
Mitochondrial DNA B Resour. 2019 Dec 11;5(1):142-144. doi: 10.1080/23802359.2019.1698353.
5
Complete chloroplast genome of the (Papaveraceae), a traditional medicine of Tibetan.
Mitochondrial DNA B Resour. 2019 Jul 12;4(2):2335-2336. doi: 10.1080/23802359.2019.1629343.
6
The complete chloroplast genome of Prain 1894 (Papaveraceae), a high-altitude plant distributed on the Qinghai-Tibet plateau.
Mitochondrial DNA B Resour. 2024 Jan 25;9(1):195-199. doi: 10.1080/23802359.2024.2306879. eCollection 2024.
8
The complete chloroplast genome of (Papaveraceae), a traditional Tibetan medicine.
Mitochondrial DNA B Resour. 2024 Jun 17;9(6):802-807. doi: 10.1080/23802359.2024.2368208. eCollection 2024.
9
Characterization of the complete chloroplast genome of the prickly blue poppy Hook. f. & Thomson (Ranunculales: Papaveraceae).
Mitochondrial DNA B Resour. 2021 Mar 11;6(3):792-793. doi: 10.1080/23802359.2021.1882902.
10
Comparative chloroplast genomics and phylogenetic analysis of Oreomecon nudicaulis (Papaveraceae).
BMC Genom Data. 2024 May 30;25(1):49. doi: 10.1186/s12863-024-01236-8.

引用本文的文献

1
The Complete Chloroplast Genome of and Its Genetic Comparison to Other Species.
Genes (Basel). 2024 Oct 6;15(10):1301. doi: 10.3390/genes15101301.
2
The complete chloroplast genome of (Papaveraceae), a traditional Tibetan medicine.
Mitochondrial DNA B Resour. 2024 Jun 17;9(6):802-807. doi: 10.1080/23802359.2024.2368208. eCollection 2024.
4
The complete chloroplast genome of Prain 1894 (Papaveraceae), a high-altitude plant distributed on the Qinghai-Tibet plateau.
Mitochondrial DNA B Resour. 2024 Jan 25;9(1):195-199. doi: 10.1080/23802359.2024.2306879. eCollection 2024.
5
Herbgenomics meets Papaveraceae: a promising -omics perspective on medicinal plant research.
Brief Funct Genomics. 2024 Sep 27;23(5):579-594. doi: 10.1093/bfgp/elad050.

本文引用的文献

1
Genome skimming herbarium specimens for DNA barcoding and phylogenomics.
Plant Methods. 2018 Jun 5;14:43. doi: 10.1186/s13007-018-0300-0. eCollection 2018.
2
An Ethnopharmacological, Phytochemical and Pharmacological Review of the Genus Meconopsis.
Am J Chin Med. 2016;44(3):439-62. doi: 10.1142/S0192415X16500257. Epub 2016 Apr 26.
3
MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets.
Mol Biol Evol. 2016 Jul;33(7):1870-4. doi: 10.1093/molbev/msw054. Epub 2016 Mar 22.
4
Trimmomatic: a flexible trimmer for Illumina sequence data.
Bioinformatics. 2014 Aug 1;30(15):2114-20. doi: 10.1093/bioinformatics/btu170. Epub 2014 Apr 1.
5
Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs.
Mol Ecol Resour. 2014 Sep;14(5):1024-31. doi: 10.1111/1755-0998.12251. Epub 2014 Apr 7.
7
MAFFT multiple sequence alignment software version 7: improvements in performance and usability.
Mol Biol Evol. 2013 Apr;30(4):772-80. doi: 10.1093/molbev/mst010. Epub 2013 Jan 16.
8
jModelTest 2: more models, new heuristics and parallel computing.
Nat Methods. 2012 Jul 30;9(8):772. doi: 10.1038/nmeth.2109.
9
Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data.
Bioinformatics. 2012 Jun 15;28(12):1647-9. doi: 10.1093/bioinformatics/bts199. Epub 2012 Apr 27.
10
MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space.
Syst Biol. 2012 May;61(3):539-42. doi: 10.1093/sysbio/sys029. Epub 2012 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验