Quah Suan P, Zhang Yugang, Fluerasu Andrei, Yu Xiaoxi, Zheng Bingqian, Yin Xuechen, Liu Weiping, Bhatia Surita R
Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA.
NSLS-II, Brookhaven National Laboratory, Upton, NY 11973, USA.
Soft Matter. 2021 Feb 19;17(6):1685-1691. doi: 10.1039/d0sm01628d.
Many recent studies have highlighted the timescale for stress relaxation of biomaterials on the microscale as an important factor in regulating a number of cell-material interactions, including cell spreading, proliferation, and differentiation. Relevant timescales on the order of 0.1-100 s have been suggested by several studies. While such timescales are accessible through conventional mechanical rheology, several biomaterials have heterogeneous structures, and stress relaxation mechanisms of the bulk material may not correspond to that experienced in the cellular microenvironment. Here we employ X-ray photon correlation spectroscopy (XPCS) to explore the temperature-dependent dynamics, relaxation time, and microrheology of multicomponent hydrogels comprising of commercial poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymer F127 and alginate. Previous studies on this system have shown thermoreversible behavior in the bulk oscillatory shear rheology. At physiological temperatures, bulk rheology of these samples shows behavior characteristic of a soft solid, with G' > G'' and no crossover between G' and G'' over the measurable frequency range, indicating a relaxation time >125 s. By contrast, XPCS-based microrheology shows viscoelastic behavior at low frequencies, and XPCS-derived correlation functions show relaxation times ranging from 10-45 s on smaller length scales. Thus, we are able to use XPCS to effectively probe the viscoelasticity and relaxation behavior within the material microenvironments.
最近的许多研究都强调了生物材料在微观尺度上应力松弛的时间尺度,这是调节多种细胞与材料相互作用的一个重要因素,这些相互作用包括细胞铺展、增殖和分化。几项研究提出了相关时间尺度在0.1 - 100秒量级。虽然这样的时间尺度可以通过传统的机械流变学来获取,但几种生物材料具有异质结构,且大块材料的应力松弛机制可能与细胞微环境中所经历的机制并不一致。在此,我们采用X射线光子相关光谱法(XPCS)来探究由商用聚(环氧乙烷)-聚(环氧丙烷)-聚(环氧乙烷)(PEO-PPO-PEO)三嵌段共聚物F127和藻酸盐组成的多组分水凝胶的温度依赖性动力学、弛豫时间和微观流变学。此前对该体系的研究已表明在大块振荡剪切流变学中存在热可逆行为。在生理温度下,这些样品的大块流变学表现出软固体的特征行为,即G' > G'',并且在可测量频率范围内G'和G''之间没有交叉点,这表明弛豫时间>125秒。相比之下,基于XPCS的微观流变学在低频下表现出粘弹性行为,且XPCS衍生的相关函数在较小长度尺度上显示弛豫时间范围为10 - 45秒。因此,我们能够使用XPCS有效地探测材料微环境内的粘弹性和弛豫行为。