Sun Yiwei, Wang Huanlei, Wei Wenrui, Zheng Yulong, Tao Lin, Wang Yixian, Huang Minghua, Shi Jing, Shi Zhi-Cheng, Mitlin David
School of Materials Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, People's Republic of China.
Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712-1591, United States.
ACS Nano. 2021 Jan 26;15(1):1652-1665. doi: 10.1021/acsnano.0c09290. Epub 2020 Dec 28.
It is a major challenge to achieve fast charging and high reversible capacity in potassium ion storing carbons. Here, we synthesized sulfur-rich graphene nanoboxes (SGNs) by one-step chemical vapor deposition to deliver exceptional rate and cyclability performance as potassium ion battery and potassium ion capacitor (PIC) anodes. The SGN electrode exhibits a record reversible capacity of 516 mAh g at 0.05 A g, record fast charge capacity of 223 mA h g at 1 A g, and exceptional stability with 89% capacity retention after 1000 cycles. Additionally, the SGN-based PIC displays highly favorable Ragone chart characteristics: 112 Wh kgat 505 W kg and 28 Wh kg at 14618 W kg with 92% capacity retention after 6000 cycles. X-ray photoelectron spectroscopy analysis illustrates a charge storage sequence based primarily on reversible ion binding at the structural-chemical defects in the carbon and the reversible formation of K-S-C and KS compounds. Transmission electron microscopy analysis demonstrates reversible dilation of graphene due to ion intercalation, which is a secondary source of capacity at low voltage. This intercalation mechanism is shown to be stable even at cycle 1000. Galvanostatic intermittent titration technique analysis yields diffusion coefficients from 10 to 10 cm s, an order of magnitude higher than S-free carbons. The direct electroanalytic/analytic comparison indicates that chemically bound sulfur increases the number of reversible ion bonding sites, promotes reaction-controlled over diffusion-controlled kinetics, and stabilizes the solid electrolyte interphase. It is also demonstrated that the initial Coulombic efficiency can be significantly improved by switching from a standard carbonate-based electrolyte to an ether-based one.
在钾离子存储碳材料中实现快速充电和高可逆容量是一项重大挑战。在此,我们通过一步化学气相沉积法合成了富硫石墨烯纳米盒(SGNs),以作为钾离子电池和钾离子电容器(PIC)的阳极展现出卓越的倍率性能和循环性能。SGN电极在0.05 A g时展现出516 mAh g的创纪录可逆容量,在1 A g时具有223 mA h g的创纪录快速充电容量,并且在1000次循环后具有89%的容量保持率,稳定性极佳。此外,基于SGN的PIC显示出非常有利的Ragone图特性:在505 W kg时为112 Wh kg,在14618 W kg时为28 Wh kg,在6000次循环后容量保持率为92%。X射线光电子能谱分析表明,电荷存储过程主要基于碳结构化学缺陷处的可逆离子结合以及K-S-C和KS化合物的可逆形成。透射电子显微镜分析表明,由于离子嵌入,石墨烯会发生可逆膨胀,这是低电压下容量的次要来源。这种嵌入机制即使在第1000次循环时也显示出稳定性。恒电流间歇滴定技术分析得出扩散系数为10 至10 cm² s,比无硫碳材料高一个数量级。直接的电分析/分析比较表明,化学结合的硫增加了可逆离子键合位点的数量,促进了反应控制而非扩散控制的动力学,并稳定了固体电解质界面。还证明了通过从标准碳酸盐基电解质切换到醚基电解质,可以显著提高初始库仑效率。