State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
Sci Total Environ. 2020 Dec 20;749:142318. doi: 10.1016/j.scitotenv.2020.142318. Epub 2020 Sep 9.
Pyrolysis is a promising treatment for soil remediation for rapidity and fertility preservation. But it is difficult to establish the relationship between pyrolysis behaviors and soil organic matter (SOM) structures, for SOM is a mixture of heterogeneous compounds. HA sub-fractions from the same soil source may provide a series of promising objects to understand SOM at molecular level and the resulting patterns in SOM pyrolysis. We first propose a novel insight into pyrolysis mechanism response to molecular signatures using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) combined with thermogravimetric analysis (TGA) to study six humic acid (HA) sub-fractions extracted from a forest soil. The findings indicate that decomposition of soil HA occurs systematically due to molecular signatures. The decomposition can be categorized as carboxyl controlled (below 280 °C), lipid-dominated (280-450 °C) and condensed aromatics-dominated processes (450-700 °C). Predominant reaction mechanism of all HA sub-fractions was random nucleation (α > 0.25). Lipid in HA tend to initiate multiple nuclei in thermal degradation, while condensed aromatics tend to initiate and grow centering single random point in higher conversion rate (α > 0.75). Bridging the molecular signature and thermogravimetry reveals that the pyrolysis stage below 350 °C should be divided into two distinct processes related to the carboxylic group and lipid compounds, although this stage has conventionally been considered as a single process. The N element of HA was mostly preserved in the condensed aromatics which was mainly pyrolyzed above 450 °C, suggesting that pyrolysis below 450 °C is a preferable remediation treatment considering nitrogen fertility preservation. The observed molecular-level pyrolysis patterns can be applied as a targeted remediation procedure for contaminated soils and can improve the understanding of SOM thermal behaviors at the molecular level.
热解是一种很有前途的土壤修复方法,因为它快速且能保持肥力。但是,由于土壤有机质(SOM)是由多种异质化合物组成的混合物,因此很难建立热解行为与 SOM 结构之间的关系。来自同一土壤源的 HA 亚组分可能为在分子水平上理解 SOM 以及 SOM 热解中的相关模式提供一系列有前景的对象。我们首先提出了一种新的见解,即使用电喷雾电离傅里叶变换离子回旋共振质谱(FT-ICR MS)结合热重分析(TGA),根据分子特征来研究从森林土壤中提取的 6 种腐殖酸(HA)亚组分的热解机制响应。研究结果表明,由于分子特征,土壤 HA 的分解是系统发生的。这种分解可以分为羧基控制(<280°C)、脂质主导(280-450°C)和缩合芳烃主导过程(450-700°C)。所有 HA 亚组分的主要反应机制都是无规成核(α>0.25)。HA 中的脂质在热降解中倾向于引发多个核,而缩合芳烃则倾向于在更高的转化率(α>0.75)下引发并以单个随机点为中心生长。将分子特征与热重分析联系起来表明,350°C 以下的热解阶段应分为与羧基和脂质化合物相关的两个不同过程,尽管这个阶段通常被认为是一个单一的过程。HA 中的 N 元素主要保存在缩合芳烃中,主要在 450°C 以上热解,这表明低于 450°C 的热解是一种更可取的修复处理方法,因为它可以保持氮素肥力。观察到的分子水平热解模式可应用于污染土壤的靶向修复程序,并可提高对 SOM 分子水平热行为的理解。