Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore-560012, India.
Molecular Biophysics Unit, Biological Sciences Division, Indian Institute of Science, Bangalore-560012, India.
J Chem Inf Model. 2021 Jan 25;61(1):444-454. doi: 10.1021/acs.jcim.0c01291. Epub 2020 Dec 29.
The HIV-1 envelope glycoprotein gp41 mediates the fusion between viral and host cell membranes leading to virus entry and target cell infection. Despite years of research, important aspects of this process such as the number of gp41 trimers involved and how they orchestrate the rearrangement of the lipids in the apposed membranes along the fusion pathway remain obscure. To elucidate these molecular underpinnings, we performed coarse-grained molecular dynamics simulations of HIV-1 virions pinned to the CD4 T cell membrane by different numbers of gp41 trimers. We built realistic cell and viral membranes by mimicking their respective lipid compositions. We found that a single gp41 was inadequate for mediating fusion. Lipid mixing between membranes, indicating the onset of fusion, was efficient when three or more gp41 trimers pinned the membranes. The gp41 trimers interacted strongly with many different lipids in the host cell membrane, triggering lipid configurational rearrangements, exchange, and mixing. Simpler membranes, comprising fewer lipid types, displayed strong resistance to fusion, revealing the crucial role of the lipidomes in HIV-1 entry. Performing simulations at different temperatures, we estimated the free energy barrier to lipid mixing, and hence membrane stalk formation, with three and four tethering gp41 trimers to be ∼6.2 kcal/mol, a >4-fold reduction over estimates without gp41. Together, these findings present molecular-level, quantitative insights into the early stages of gp41-mediated HIV-1 entry. Preventing the requisite gp41 molecules from tethering the membranes or altering membrane lipid compositions may be potential intervention strategies.
HIV-1 包膜糖蛋白 gp41 介导病毒和宿主细胞膜之间的融合,导致病毒进入和靶细胞感染。尽管经过多年的研究,这个过程的一些重要方面,如涉及的 gp41 三聚体的数量以及它们如何协调融合途径中相邻膜中脂质的重排,仍然不清楚。为了阐明这些分子基础,我们通过不同数量的 gp41 三聚体将 HIV-1 病毒颗粒固定在 CD4 T 细胞膜上,进行了粗粒度分子动力学模拟。我们通过模拟各自的脂质组成来构建真实的细胞膜和病毒膜。我们发现,单个 gp41 不足以介导融合。当三个或更多的 gp41 三聚体固定膜时,膜之间的脂质混合(表明融合开始)是有效的。gp41 三聚体与宿主细胞膜中的许多不同脂质强烈相互作用,引发脂质构象重排、交换和混合。组成更简单、脂质类型更少的膜对融合表现出强烈的抵抗力,这揭示了脂质组在 HIV-1 进入中的关键作用。在不同温度下进行模拟,我们估计了有三个和四个固定 gp41 三聚体时的脂质混合(即膜突形成)的自由能势垒,与没有 gp41 的情况相比,分别降低了约 6.2 kcal/mol,降低了 4 倍以上。这些发现共同为 gp41 介导的 HIV-1 进入的早期阶段提供了分子水平的定量见解。阻止必需的 gp41 分子固定膜或改变膜脂质组成可能是潜在的干预策略。