Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States.
Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, MA 02215, United States.
J Mol Biol. 2022 Jan 30;434(2):167345. doi: 10.1016/j.jmb.2021.167345. Epub 2021 Nov 8.
The envelope glycoprotein (Env) of the human immunodeficient virus (HIV-1) is known to cluster on the viral membrane surface to attach to target cells and cause membrane fusion for HIV-1 infection. However, the molecular structural mechanisms that drive Env clustering remain opaque. Here, we use solid-state NMR spectroscopy and molecular dynamics (MD) simulations to investigate nanometer-scale clustering of the membrane-proximal external region (MPER) and transmembrane domain (TMD) of gp41, the fusion protein component of Env. Using F solid-state NMR experiments of mixed fluorinated peptides, we show that MPER-TMD trimers form clusters with interdigitated MPER helices in cholesterol-containing membranes. Inter-trimer F-F cross peaks, which are indicative of spatial contacts within ∼2 nm, are observed in cholesterol-rich virus-mimetic membranes but are suppressed in cholesterol-free model membranes. Water-peptide and lipid-peptide cross peaks in 2D H-F correlation spectra indicate that the MPER is well embedded in model phosphocholine membranes but is more exposed to the surface of the virus-mimetic membrane. These experimental results are reproduced in coarse-grained and atomistic molecular dynamics simulations, which suggest that the effects of cholesterol on gp41 clustering is likely via indirect modulation of the MPER orientation. Cholesterol binding to the helix-turn-helix region of the MPER-TMD causes a parallel orientation of the MPER with the membrane surface, thus allowing MPERs of neighboring trimers to interact with each other to cause clustering. These solid-state NMR data and molecular dynamics simulations suggest that MPER and cholesterol cooperatively govern the clustering of gp41 trimers during virus-cell membrane fusion.
人类免疫缺陷病毒(HIV-1)的包膜糖蛋白(Env)已知会聚集在病毒膜表面,以附着靶细胞并导致膜融合,从而引发 HIV-1 感染。然而,驱动 Env 聚集的分子结构机制仍不清楚。在这里,我们使用固态 NMR 光谱和分子动力学(MD)模拟来研究 HIV-1 Env 融合蛋白成分 gp41 的膜近端外区(MPER)和跨膜结构域(TMD)的纳米级聚集。通过混合氟代肽的 F 固态 NMR 实验,我们表明 MPER-TMD 三聚体在含有胆固醇的膜中形成具有交错 MPER 螺旋的簇。在富含胆固醇的病毒模拟膜中观察到相互三聚体 F-F 交叉峰,表明在 2nm 内存在空间接触,但在无胆固醇的模型膜中则被抑制。2D H-F 相关谱中的水-肽和脂质-肽交叉峰表明,MPER 在模型磷酸胆碱膜中很好地嵌入,但在病毒模拟膜的表面更暴露。这些实验结果在粗粒化和原子分子动力学模拟中得到了再现,这表明胆固醇对 gp41 聚集的影响可能是通过间接调节 MPER 的方向。胆固醇与 MPER-TMD 的螺旋-转角-螺旋区结合导致 MPER 与膜表面平行取向,从而允许相邻三聚体的 MPER 相互作用,导致聚集。这些固态 NMR 数据和分子动力学模拟表明,MPER 和胆固醇在病毒-细胞膜融合过程中协同控制 gp41 三聚体的聚集。