Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland.
Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS, 20156 Milan, Italy.
Int J Mol Sci. 2020 Dec 22;22(1):45. doi: 10.3390/ijms22010045.
The complement system is involved in promoting secondary injury after traumatic brain injury (TBI), but the roles of the classical and lectin pathways leading to complement activation need to be clarified. To this end, we aimed to determine the ability of the brain to activate the synthesis of classical and lectin pathway initiators in response to TBI and to examine their expression in primary microglial cell cultures. We have modeled TBI in mice by controlled cortical impact (CCI), a clinically relevant experimental model. Using Real-time quantitative polymerase chain reaction (RT-qPCR) we analyzed the expression of initiators of classical the complement component 1q, 1r and 1s (, , and ) and lectin (mannose binding lectin A, mannose binding lectin C, , , and ) complement pathways and other cellular markers in four brain areas (cortex, striatum, thalamus and hippocampus) of mice exposed to CCI from 24 h and up to 5 weeks. In all murine ipsilateral brain structures assessed, we detected long-lasting, time- and area-dependent significant increases in the mRNA levels of all classical (, , ) and some lectin () initiator molecules after TBI. In parallel, we observed significantly enhanced expression of cellular markers for neutrophils (), T cells (), astrocytes (glial fibrillary acidic protein-), microglia/macrophages (allograft inflammatory factor 1-), and microglia (transmembrane protein 119-); moreover, we detected astrocytes (GFAP) and microglia/macrophages (IBA-1) protein level strong upregulation in all analyzed brain areas. Further, the results obtained in primary microglial cell cultures suggested that these cells may be largely responsible for the biosynthesis of classical pathway initiators. However, microglia are unlikely to be responsible for the production of the lectin pathway initiators. Immunofluorescence analysis confirmed that at the site of brain injury, the C1q is localized in microglia/macrophages and neurons but not in astroglial cells. In sum, the brain strongly reacts to TBI by activating the local synthesis of classical and lectin complement pathway activators. Thus, the brain responds to TBI with a strong, widespread and persistent upregulation of complement components, the targeting of which may provide protection in TBI.
补体系统参与促进创伤性脑损伤 (TBI) 后的继发性损伤,但需要阐明经典途径和凝集素途径导致补体激活的作用。为此,我们旨在确定大脑激活经典和凝集素途径引发剂合成以响应 TBI 的能力,并检查它们在原代小胶质细胞培养物中的表达。我们通过皮质控制冲击 (CCI) 对小鼠进行 TBI 建模,这是一种临床相关的实验模型。使用实时定量聚合酶链反应 (RT-qPCR),我们分析了经典补体成分 1q、1r 和 1s (、和) 和凝集素 (甘露糖结合凝集素 A、甘露糖结合凝集素 C、、、和) 补体途径以及暴露于 CCI 的小鼠四个脑区 (皮质、纹状体、丘脑和海马体) 的其他细胞标志物的启动子的表达 24 小时和长达 5 周。在评估的所有小鼠同侧脑结构中,我们在 TBI 后检测到所有经典 (、、) 和一些凝集素 () 引发分子的长时间、时间和区域依赖性显著增加。平行地,我们观察到中性粒细胞 ( )、T 细胞 ( )、星形胶质细胞 (胶质纤维酸性蛋白-)、小胶质细胞/巨噬细胞 (同种异体炎症因子 1-) 和小胶质细胞 (跨膜蛋白 119-) 的细胞标志物表达显著增强;此外,我们在所有分析的脑区中检测到星形胶质细胞 (GFAP) 和小胶质细胞/巨噬细胞 (IBA-1) 的蛋白质水平强烈上调。此外,在原代小胶质细胞培养物中获得的结果表明,这些细胞可能在很大程度上负责经典途径引发剂的生物合成。然而,小胶质细胞不太可能负责凝集素途径引发剂的产生。免疫荧光分析证实,在脑损伤部位,C1q 定位于小胶质细胞/巨噬细胞和神经元中,但不在星形胶质细胞中。总之,大脑通过激活经典和凝集素补体途径激活剂的局部合成对 TBI 做出强烈、广泛和持久的反应。因此,大脑对 TBI 产生强烈、广泛和持久的补体成分上调,针对这些成分可能提供 TBI 的保护。