School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
ARC Center of Excellence for Electromaterials Science, University of Wollongong, Wollongong, NSW 2522, Australia.
ACS Appl Mater Interfaces. 2021 Jan 13;13(1):1632-1643. doi: 10.1021/acsami.0c20173. Epub 2020 Dec 29.
Wearable technologies offer the opportunity to record human physiological signals in real time, in a noninvasive way, and the data can be used to aid in the early detection of abnormal health conditions. Here, we demonstrate how the interconnected porosity can be used to increase the sensitivity and linearity of capacitive pressure sensors. The finite element analysis supports the experimental observation that the movement of air during the dynamic mechanical loading is responsible for the high sensitivity observed (0.18 ± 0.01 kPa) when compared with the solid poly(glycerol sebacate) sensor (0.0042 ± 0.0002 kPa). The porous sensors present strain insensitivity and remarkable linearity over the entire range of applied mechanical pressure (0-6 kPa), capable of detecting both static and dynamic mechanical stimuli (17 nm/s), and a response time of 50 ms, without evidence of fatigue or electrical hysteresis over 10,000 mechanical cycles. The outstanding features of the porous sensors can find a broad range of applications in real-time health monitoring, from demanding movements like walking/running, to small deformations resulting from breathing or heart beating. The ultrasensitive microcellular structures synthesized in this study can be applied to other types of sensing transductions to obtain tunable and function-specific sensors with high sensitivity.
可穿戴技术提供了实时、非侵入式记录人体生理信号的机会,并且这些数据可用于帮助早期检测异常健康状况。在这里,我们展示了如何利用互连通孔率来提高电容式压力传感器的灵敏度和线性度。有限元分析支持了实验观察,即动态机械加载过程中空气的运动是导致高灵敏度(0.18 ± 0.01 kPa)的原因,而与固体聚(甘油-癸二酸酯)传感器(0.0042 ± 0.0002 kPa)相比,这种灵敏度要高得多。多孔传感器在整个应用机械压力范围内(0-6 kPa)表现出应变不敏感性和显著的线性度,能够检测静态和动态机械刺激(17 nm/s),响应时间为 50 ms,在 10,000 次机械循环中没有疲劳或电滞后的迹象。多孔传感器的卓越性能可以在实时健康监测中找到广泛的应用,从行走/跑步等苛刻的运动,到呼吸或心跳引起的微小变形。本研究中合成的超灵敏微蜂窝结构可以应用于其他类型的传感转换,以获得具有高灵敏度的可调谐和特定功能的传感器。