Squire Marietta M, Sessel Gareth K, Lin Gary, Squire Edward N, Igusa Takeru
Department of Civil and Systems Engineering, 1466Johns Hopkins University, Baltimore, MD, USA.
Outreach Engineering NPC (Nonprofit Company), Johannesburg, South Africa.
HERD. 2021 Apr;14(2):109-129. doi: 10.1177/1937586720976585. Epub 2020 Dec 30.
Our goal was to optimize infection control of paired environmental control interventions within hospitals to reduce methicillin-resistant (MRSA), carbapenem-resistant (CRE), and vancomycin-resistant (VRE).
The most widely used infection control interventions are deployment of handwashing (HW) stations, control of relative humidity (RH), and negative pressure (NP) treatment rooms. Direct costs of multidrug-resistant organism (MDRO) infections are typically not included in the design of such interventions.
We examined the effectiveness of pairing HW with RH and HW with NP. We used the following three data sets: A meta-analysis of progression rates from uncolonized to colonized to infected, 6 years of MDRO treatment costs from 400 hospitals, and 8 years of MDRO incidence rates at nine army hospitals. We used these data as inputs into an Infection De-Escalation Model with varying budgets to obtain optimal intervention designs. We then computed the infection and prevention rates and cost savings resulting from these designs.
The average direct cost of an MDRO infection was $3,289, $1,535, and $1,067 for MRSA, CRE, and VRE. The mean annual incidence rates per facility were 0.39%, 0.034%, and 0.011% for MRSA, CRE, and VRE. After applying the cost-minimizing intervention pair to each scenario, the percentage reductions in infections (and annual direct cost savings) in large, community, and small acute care hospitals were 69% ($1.5 million), 73% ($631K), 60% ($118K) for MRSA, 52% ($460.5K), 58% ($203K), 50% ($37K) for CRE, and 0%, 0%, and 50% ($12.8K) for VRE.
The application of this Infection De-Escalation Model can guide cost-effective decision making in hospital built environment design to improve control of MDRO infections.
我们的目标是优化医院内成对环境控制干预措施的感染控制,以减少耐甲氧西林金黄色葡萄球菌(MRSA)、耐碳青霉烯类肠杆菌科细菌(CRE)和耐万古霉素肠球菌(VRE)。
最广泛使用的感染控制干预措施是设置洗手(HW)站、控制相对湿度(RH)和负压(NP)治疗室。多重耐药菌(MDRO)感染的直接成本通常不包括在这类干预措施的设计中。
我们研究了将HW与RH配对以及将HW与NP配对的有效性。我们使用了以下三个数据集:从未定植到定植再到感染的进展率的荟萃分析、400家医院6年的MDRO治疗成本,以及9家军队医院8年的MDRO发病率。我们将这些数据作为不同预算的感染降级模型的输入,以获得最佳干预设计。然后,我们计算了这些设计带来的感染率、预防率和成本节约。
MRSA、CRE和VRE的MDRO感染平均直接成本分别为3289美元、1535美元和1067美元。每个机构的年平均发病率,MRSA为0.39%,CRE为0.034%,VRE为0.011%。在每种情况下应用成本最小化的干预措施组合后,大型、社区和小型急症护理医院的感染减少百分比(以及年度直接成本节约),对于MRSA分别为69%(150万美元)、73%(63.1万美元)、60%(11.8万美元);对于CRE分别为52%(46.05万美元)、58%(20.3万美元)、50%(3.7万美元);对于VRE分别为0%、0%、50%(1.28万美元)。
这种感染降级模型的应用可以指导医院建筑环境设计中的成本效益决策,以改善对MDRO感染的控制。