Mohapatra Somesh, Hartrampf Nina, Poskus Mackenzie, Loas Andrei, Gómez-Bombarelli Rafael, Pentelute Bradley L
Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
ACS Cent Sci. 2020 Dec 23;6(12):2277-2286. doi: 10.1021/acscentsci.0c00979. Epub 2020 Nov 12.
The chemical synthesis of polypeptides involves stepwise formation of amide bonds on an immobilized solid support. The high yields required for efficient incorporation of each individual amino acid in the growing chain are often impacted by sequence-dependent events such as aggregation. Here, we apply deep learning over ultraviolet-visible (UV-vis) analytical data collected from 35 427 individual fluorenylmethyloxycarbonyl (Fmoc) deprotection reactions performed with an automated fast-flow peptide synthesizer. The integral, height, and width of these time-resolved UV-vis deprotection traces indirectly allow for analysis of the iterative amide coupling cycles on resin. The computational model maps structural representations of amino acids and peptide sequences to experimental synthesis parameters and predicts the outcome of deprotection reactions with less than 6% error. Our deep-learning approach enables experimentally aware computational design for prediction of Fmoc deprotection efficiency and minimization of aggregation events, building the foundation for real-time optimization of peptide synthesis in flow.
多肽的化学合成涉及在固定化固体支持物上逐步形成酰胺键。在不断增长的链中高效掺入每个氨基酸所需的高产量常常受到诸如聚集等序列依赖性事件的影响。在这里,我们对通过自动快速流动肽合成仪进行的35427个单个芴甲氧羰基(Fmoc)脱保护反应收集的紫外可见(UV-vis)分析数据应用深度学习。这些时间分辨的UV-vis脱保护曲线的积分、高度和宽度间接允许对树脂上的迭代酰胺偶联循环进行分析。该计算模型将氨基酸和肽序列的结构表示映射到实验合成参数,并以小于6%的误差预测脱保护反应的结果。我们的深度学习方法实现了具有实验意识的计算设计,用于预测Fmoc脱保护效率并最小化聚集事件,为流动中肽合成的实时优化奠定了基础。