MacLeod B P, Parlane F G L, Morrissey T D, Häse F, Roch L M, Dettelbach K E, Moreira R, Yunker L P E, Rooney M B, Deeth J R, Lai V, Ng G J, Situ H, Zhang R H, Elliott M S, Haley T H, Dvorak D J, Aspuru-Guzik A, Hein J E, Berlinguette C P
Department of Chemistry, The University of British Columbia, Vancouver, British Columbia, Canada.
Stewart Blusson Quantum Matter Institute, The University of British Columbia, Vancouver, British Columbia, Canada.
Sci Adv. 2020 May 13;6(20):eaaz8867. doi: 10.1126/sciadv.aaz8867. eCollection 2020 May.
Discovering and optimizing commercially viable materials for clean energy applications typically takes more than a decade. Self-driving laboratories that iteratively design, execute, and learn from materials science experiments in a fully autonomous loop present an opportunity to accelerate this research process. We report here a modular robotic platform driven by a model-based optimization algorithm capable of autonomously optimizing the optical and electronic properties of thin-film materials by modifying the film composition and processing conditions. We demonstrate the power of this platform by using it to maximize the hole mobility of organic hole transport materials commonly used in perovskite solar cells and consumer electronics. This demonstration highlights the possibilities of using autonomous laboratories to discover organic and inorganic materials relevant to materials sciences and clean energy technologies.
发现并优化适用于清洁能源应用的具有商业可行性的材料通常需要十多年时间。能够在完全自主的循环中迭代设计、执行并从材料科学实验中学习的自动驾驶实验室为加速这一研究过程提供了契机。我们在此报告一个由基于模型的优化算法驱动的模块化机器人平台,该平台能够通过改变薄膜成分和加工条件自主优化薄膜材料的光学和电子特性。我们通过使用该平台来最大化钙钛矿太阳能电池和消费电子产品中常用的有机空穴传输材料的空穴迁移率,展示了这个平台的强大功能。这一演示突出了利用自主实验室发现与材料科学和清洁能源技术相关的有机和无机材料的可能性。