Laboratoire de Physique et d'Étude des matériaux (LPEM, UMR 8213), ESPCI Paris, Université PSL, CNRS, Sorbonne Université, 75005 Paris, France.
Université de Strasbourg, CNRS, Laboratoire de Bioimagerie et Pathologies UMR 7021, F-67000 Strasbourg, France.
ACS Nano. 2021 Jan 26;15(1):1445-1453. doi: 10.1021/acsnano.0c08772. Epub 2020 Dec 30.
Whispering gallery mode (WGM) microcavities are emerging as potential candidates in the field of biosensing applications, as their resonance wavelengths shift with changes in the refractive index in the region of their evanescent field. Their high-quality resonance modes and accessible surface functionalities make them promising for molecular assays, but their high sensitivity makes them inherently unstable. Here, we demonstrate that WGM resonances also strongly enhance fluorescence energy transfer between donors placed inside the microcavity and acceptors placed outside. We load colloidal quantum dots (QDs) into polymeric microspheres to provide WGMs that benefit from the QD optical features when used as energy-transfer donors. Spectroscopic analysis of the emission from the microcavities shows that the high quality of WGMs enables a very efficient energy transfer to dye-loaded polymer nanoparticle acceptors placed in their vicinity. Compared to Förster resonance energy transfer, WGM-enabled energy transfer (WGET) occurs over a much more extended volume, thanks to the delocalization of the mode over a typically 10 times larger surface and to the extension of the WGM electromagnetic field to larger distances (>100 nm a few nm) from the surface of the microcavity. The resulting sensing scheme combines the sensitivity of WGM spectroscopy with the specificity and simple detection schemes of fluorescence energy transfer, thus providing a potentially powerful class of biosensors.
whispering gallery mode (WGM) 微腔作为生物传感应用领域的潜在候选者正在兴起,因为它们的共振波长随着其消逝场区域的折射率变化而移动。它们的高品质共振模式和可访问的表面功能使其成为分子分析的有前途的选择,但它们的高灵敏度使其固有不稳定。在这里,我们证明 WGM 共振也强烈增强了置于微腔内部的供体与置于外部的受体之间的荧光能量转移。我们将胶体量子点 (QD) 加载到聚合物微球中,以提供 WGM,当用作能量转移供体时,它们受益于 QD 的光学特性。对微腔发射的光谱分析表明,WGM 的高品质使非常高效的能量转移到置于其附近的染料负载聚合物纳米颗粒受体。与Förster 共振能量转移相比,WGM 实现的能量转移 (WGET) 发生在更大的体积中,这要归功于模式在通常大 10 倍的表面上的离域化,以及 WGM 电磁场扩展到距微腔表面更大的距离 (>100nm 几个 nm)。由此产生的传感方案结合了 WGM 光谱的灵敏度和荧光能量转移的特异性和简单检测方案,从而提供了一类潜在强大的生物传感器。