Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
ACS Sens. 2021 Mar 26;6(3):786-796. doi: 10.1021/acssensors.0c01588. Epub 2020 Dec 30.
Visualizing and tracking lysosomal dynamic changes is crucially important in the fields of physiology and pathology. Most currently used pH-dependent small-molecule lysotrackers and sensors usually fail to visualize and track the changes due to (1) their leakage from lysosomes when the lysosomal pH increases and (2) their low photostability. Therefore, it is of significant interest to develop lysosomal probes for visualizing and tracking lysosomal dynamics independent of pH fluctuations and with high photostability. Herein, we found that the popular dicyanomethylene-4-pyran (DCM) derivative - can selectively target and label lysosomes with bright red fluorescence regardless of pH changes. The fluorescence enhancement in lysosomes has probably resulted from their microenvironment of polarity and viscosity. Compared with the commonly used commercial lysosomal molecular probes (LysoTracker Deep Red (LTDR) and LysoTracker Red DND-99), - was demonstrated to exhibit a much stronger tolerance in lysosomes against various treatments and microenvironmental changes, and lysosomal membrane permeability could not cause - to lose imaging of their targets as well. Moreover, - exhibited a superior anti-photobleaching ability and low (photo-) cytotoxicity, which, along with pH-insensitivity, ensured its capability of long-term visualizing and tracking lysosomal dynamics. Lysosomal dynamic events such as the kiss-and-run process, fusion-fission, and mitophagy were successfully recorded with -. Our study thus confirms that - is highly competitive for lysosomal imaging by overcoming the limitations of the commercial LysoTrackers and highlights the unexplored application of - in bioimaging.
可视化和跟踪溶酶体的动态变化在生理学和病理学领域至关重要。大多数目前使用的依赖于 pH 的小分子溶酶体追踪剂和传感器通常由于 (1) 溶酶体 pH 值升高时从溶酶体中漏出和 (2) 其低光稳定性而无法可视化和跟踪变化。因此,开发独立于 pH 波动且具有高光稳定性的溶酶体探针来可视化和跟踪溶酶体动力学具有重要意义。在此,我们发现流行的二氰亚甲基-4-吡喃(DCM)衍生物 - 可以选择性地靶向和标记溶酶体,产生明亮的红色荧光,而不受 pH 变化的影响。溶酶体中的荧光增强可能是由于其极性和粘度的微环境。与常用的商业溶酶体分子探针(LysoTracker Deep Red (LTDR) 和 LysoTracker Red DND-99)相比,- 在溶酶体中对各种处理和微环境变化具有更强的耐受性,并且溶酶体膜通透性也不会导致 - 失去对其靶标的成像。此外,- 表现出优异的抗光漂白能力和低(光)细胞毒性,这与 pH 不敏感性一起确保了其长期可视化和跟踪溶酶体动力学的能力。使用 - 成功记录了溶酶体的动态事件,如 kiss-and-run 过程、融合-裂变和线粒体自噬。我们的研究证实,- 通过克服商业 LysoTrackers 的局限性,在溶酶体成像方面具有很强的竞争力,并突出了 - 在生物成像中的未开发应用。